Return to search

Evaluation of single-bounce attenuated total reflectanceFourier transform infrared and two-dimensional correlation spectroscopy in quantitative analysis

The utility of single-bounce attenuated total reflectance (SB-ATR) and heterospectral two-dimensional correlation spectroscopy (H2D-CS) in quantitative analysis by Fourier transform infrared (FTIR) spectroscopy was investigated by exploring several potential applications of these techniques. Enzymatic hydrolysis of lactose in milk was monitored by SB-ATR/FTIR spectroscopy, and changes in the concentrations of glucose, galactose and lactose during the process were successfully measured quantitatively. SB-ATR/FTIR spectroscopy was shown also to perform comparably to Fourier transform near-infrared (FT-NIR) spectroscopy for the determination of the alcohol content of distilled liquors and better than FT-NIR spectroscopy and comparably to transmission FTIR spectroscopy for the analysis of alcohol, total reducing sugar, total acidity and pH in wines. In addition, a set of 149 pre-analyzed wine samples was employed to develop and validate an SB-ATR/FTIR calibration for 11 different parameters and constituents in wines with the use of partial-least-squares (PLS) regression, demonstrating the potential utility of this method in the routine analysis of wines. The application of SB-ATR/FTIR spectroscopy and H2D-CS in the selection of wavelengths for multiple linear regression (MLR) calibration for FT-NIR analysis of ternary aqueous solutions of fructose, glucose and galactose was also investigated. NIR wavelengths were identified for the three sugars by H2D-CS of the SB-ATR/FTIR spectra of binary sugar solutions in relation to their FT-NIR spectra. An MLR calibration developed based on these wavelengths gave better results than PLS calibrations and comparable results to those obtained by MLR using wavelengths selected by examination of 1st and 2nd derivative spectra. H2D-CS was extended to include 2D correlations between high-pressure liquid chromatography (HPLC) and SB-ATR/FTIR data for the purpose of identifying HPLC peaks without the need to isolate the eluted compounds. The potential utility of this approach, termed spectroscopic/chromatographic 2D correlation (SC2D-C), was investigated by generating FTIR slice spectra corresponding to the HPLC peaks of wines spiked with sucrose, glucose and fructose and comparing them to 404 reference spectra in an IR spectral library. It was found that these constituents were correctly identified provided there was sufficient random variability of their concentrations in the samples analyzed.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.19543
Date January 2003
CreatorsCocciardi, Robert Arthur
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Food Science and Agricultural Chemistry)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002021483, Theses scanned by McGill Library.

Page generated in 0.0017 seconds