Return to search

Correlation of FTIR spectra of protein gels to rheological measurements of gel strength

Globular proteins are important ingredients in many food formulations because of their nutritional value and their various functional properties such as gel formation. Proteins form gels by polymerization into a three-dimensional matrix. The rheological properties of the resulting viscoelastic solids can be obtained by Instron measurements. In the present work, gels were obtained by heating solutions of bovine serum albumin (BSA) in D$ sb2$O and egg albumin in H$ sb2$O under different conditions (i.e., pH, salt concentration, protein concentration, time of heating and temperature), and their gel strengths were measured by a compression test (Universal Testing Machine LRX). The Fourier transform infrared (FTIR) spectra of the same gel samples were recorded in order to investigate the changes in protein structure at the molecular level accompanying gel formation. Intermolecular $ beta$-sheet formation was found to increase as gel formation progresses at the expense of intramolecular $ beta$-sheet and $ alpha$-helix structures. For BSA, maximum gel strength was obtained around pH 7. The addition of salt had little effect on the gel strength while increase in protein concentration, time of heating and temperature increased the gel strength. The rate of denaturation of BSA and ovalbumin and of mixtures of these proteins in the ratios 9:1, 1:1, and 1:9 was also investigated by measuring the peak height of an aggregation band at 1618 cm$ sp{-1}$; some inhibitory effects of BSA on ovalbumin aggregation were observed. Correlations between the measured gel strengths and the amide I band profile in the FTIR spectra were examined using partial-least-squares (PLS) regression. These studies reveal that gel strengths of a particular protein gel could be adequately predicted from their infrared spectra without the need to carry out the rheological compression measurements.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.23292
Date January 1995
CreatorsRejaei, Ali Reza
ContributorsIsmail, Ashraf A. (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Food Science and Agricultural Chemistry.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001481767, proquestno: MM08047, Theses scanned by UMI/ProQuest.

Page generated in 0.0018 seconds