Return to search

The Koch Snowflake RF Surface Coil: Exploring the Role of Fractal Geometries in 23Na-MRI

Intra-cellular sodium (23Na) concentration is directly related to cellular health. Thus, sodium magnetic resonance imaging (MRI) can provide metabolic information on tissue health that a routine clinical (proton) MRI cannot. 23Na-MRI could be a valuable tool to assist physicians in the diagnosis, prognosis, and monitoring of a variety of pathologies. However, due to factors that include quantum mechanical limitations and biological restrictions, the signal-to-noise ratio (SNR) of a sodium scan is much lower than that of a standard proton scan, which limits the practicality of 23Na-MRI in a clinical setting. This project looks to improve the viability of 23Na-MRI and focuses on an often overlooked facet of MRI development, the radio frequency (RF) coil.

Fractal antennas have been used in telecommunication systems for years, and are generally exploited for their compact nature, allowing for the same performance of a larger antenna, in a smaller space. They have also been shown to be capable of a wider transmission bandwidth (BW) than a standard antenna and with MRI applications they have been shown to provide a small SNR increase in proton imaging. It is hypothesized that a surface coil with a Koch snowflake fractal geometry can provide increased SNR for a sodium MRI scan, compared to that of a standard circular geometry coil, by producing a more homogeneous magnetic field in both space and frequency.

To test the hypothesis two coils, one circular and the other a Koch snowflake fractal, were simulated. The simulated magnetic fields were compared on their homogeneity and magnitude before the two coils were constructed and implemented with a variety of sodium MRI scans. B1+ maps were acquired to measure RF field homogeneity, and SNR was determined for both coil geometries. The coils were also tested for their homogeneity over varied transmit BWs by comparing images with various field of view (FOV) sizes. Finally the coils were compared for clinical viability in a test of healthy human knee imaging.

The circular coil had a more homogeneous B1+ field than the fractal at depths between 10-40mm, and had a higher SNR in its produced images. The circular coil acquired more signal in vivo which provided a higher detail image, but the fractal coil's SNR was higher due to reduced noise. The fractal coil performed better over a wider BW which indicates that further research should be conducted into the applications of fractal coils in multi-nuclear MRI scans. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/25774
Date January 2020
CreatorsNowikow, Cameron
ContributorsNoseworthy, Michael, Biomedical Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0103 seconds