Return to search

Utilización de series de potencias para la resolución económica de elásticas, frecuencias y teoría de segundo orden de entramados de barras, en el contexto de la ingeniería estructural

Las investigaciones realizadas para la elaboración de la presente tesis involucran
desarrollos con series de potencias enteras para abordar el estudio del comportamiento
mecánico-estructural de pórticos planos abiertos y cerrados. Los estudios de la tesis se
organizan en tres partes: una que contempla la búsqueda de las frecuencias naturales de los
pórticos, otra que resuelve el comportamiento estático bajo diferentes condiciones de
solicitación/vínculo y finalmente la ampliación de los estudios de estática y determinación
indirecta de cargas críticas empleando formulaciones de segundo orden.
La resolución de las ecuaciones gobernantes de los problemas estructurales se halla dentro
del encuadre adoptado por la Teoría Clásica de Resistencia de Materiales. La metodología
básica consiste en hallar la respuesta para cualquiera de los problemas propuestos, mediante
la resolución de las ecuaciones diferenciales gobernantes utilizando series de potencias
enteras para describir los corrimientos axiales y transversales. Se evalúan las condiciones
esenciales o geométricas para todas las barras que concurren a un nodo, así como el equilibrio
del mismo y las condiciones de vinculación a tierra del entramado.
Bajo este marco de referencia, se han resuelto todos los problemas planteados con un muy
reducido número de incógnitas en comparación a las utilizadas en el método de elementos
finitos con la misma formulación unidimensional.
Se ha elaborado un código de cálculo basado en la metodología de esta tesis. Se comparan
los resultados de esta investigación con los que brindan los programas comerciales de
elementos finitos, lográndose, en algunos casos, sustanciales reducciones en el tiempo
computacional para la misma calidad de respuesta. Este tipo de enfoques es de importancia
gravitante para encarar estudios que requieran tiempo de cálculo masivo, como por ejemplo
optimización estructural. / The research performed to elaborate the present thesis involves the development of integer
power-series in order to address the study of the structural mechanics behavior of open and
closed frames. The studies of this thesis contemplate three parts: on one hand the search of
natural frequencies in the dynamics of frames, on other hand the solution of the static
behavior under different load/boundary conditions and finally, the extension of the studies
about statics and the indirect determination of buckling loads employing second order
formulations.
The resolution of the governing equations of the structural problems is enclosed in the
context of the Classic Strength of Materials Theory. The basic methodology consist in the
calculation of the response for all the proposed problems by solving the governing differential
equations by using integer power series to describe the axial and transverse displacements.
The essential or geometric conditions of all bars concurring to a given node are evaluated as
well as the equilibrium at the node and the remaining boundary conditions of the whole
frame.
Under this reference context, all the proposed problems have been solved employing a
rather reduced number of unknowns in comparison to the ones used in the finite element
method (FEM) with the same unidimensional formulation.
A calculation code based in the methodology of this thesis has been elaborated. A
comparison of the results of the present investigation with the ones obtained by commercial
programs based in the FEM has also been carried out. In some cases, a substantial reduction
of calculation time has been achieved for the same response quality. This type of approaches
is of crucial importance in order to carry out studies that require massive computational time
as, for example, the structural optimization.

Identiferoai:union.ndltd.org:uns.edu.ar/oai:repositorio.bc.uns.edu.ar:123456789/3750
Date18 August 2017
CreatorsMartín, Héctor Daniel
ContributorsFilipich, Carlos P., Maurizi, Mario
PublisherUniversidad Nacional del Sur
Source SetsUniversidad Nacional del Sur
LanguageSpanish
Detected LanguageSpanish
TypeElectronic Thesis or Dissertation, Text
Rights2

Page generated in 0.0017 seconds