Indiana University-Purdue University Indianapolis (IUPUI) / We study the one-parameter family of determinants $det(I-\gamma K_{PII}),\gamma\in\mathbb{R}$ of an integrable Fredholm operator $K_{PII}$ acting on the interval $(-s,s)$ whose kernel is constructed out of the $\Psi$-function associated with the Hastings-McLeod solution of the second Painlev\'e equation. In case $\gamma=1$, this Fredholm determinant describes the critical behavior of the eigenvalue gap probabilities of a random Hermitian matrix chosen from the Unitary Ensemble in the bulk double scaling limit near a quadratic zero of the limiting mean eigenvalue density. Using the Riemann-Hilbert method, we evaluate the large $s$-asymptotics of $\det(I-\gamma K_)$ for all values of the real parameter $\gamma$.
Identifer | oai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/3655 |
Date | 06 November 2013 |
Creators | Bothner, Thomas Joachim |
Contributors | Its, Alexander R., Bleher, Pavel, 1947-, Tarasov, Vitaly, Eremenko, Alexandre, Mukhin, Evgeny |
Source Sets | Indiana University-Purdue University Indianapolis |
Language | en_US |
Detected Language | English |
Page generated in 0.002 seconds