Return to search

SOLUTION PHASE AND MEMBRANE IMMOBILIZED IRON-BASED FREE RADICAL REACTIONS: FUNDAMENTALS AND APPLICATIONS FOR WATER TREATMENT

Membrane-based separation processes have been used extensively for drinking water purification, wastewater treatment, and numerous other applications. Reactive membranes synthesized through functionalization of the membrane pores offer enhanced reactivity due to increased surface area at the polymer-solution interface and low diffusion limitations. Oxidative techniques utilizing free radicals have proven effective for both the destruction of toxic organics and non-environmental applications. Most previous work focuses on reactions in the homogeneous phase; however, the immobilization of reactants in membrane pores offers several advantages. The use of polyanions immobilized in a membrane or chelates in solution prevents ferric hydroxide precipitation at near-neutral pH, a common limitation of iron(Fe(II/III))-catalyzed hydrogen peroxide (H2O2) decomposition. The objectives of this research are to develop a membrane-based platform for the generation of free radicals, degrade toxic organic compounds using this and similar solution-based reactions, degrade toxic organic compounds in droplet form, quantify hydroxyl radical production in these reactions, and develop kinetic models for both processes.
In this study, a functionalized membrane containing poly(acrylic acid) (PAA) was used to immobilize iron ions and conduct free radical reactions by permeating H2O2 through the membrane. The membrane’s responsive behavior to pH and divalent cations was investigated and modeled. The conversion of Fe(II) to Fe(III) in the membrane and its effect on the decomposition of hydrogen peroxide were monitored and used to develop kinetic models for predicting H2O2 decomposition in these systems. The rate of hydroxyl radical production, and hence contaminant degradation can be varied by changing the residence time, H2O2 concentration, and/or iron loading. Using these membrane-immobilized systems, successful removal of toxic organic compounds, such as pentachlorophenol (PCP), from water was demonstrated.
Another toxic organic compound of interest for water treatment applications is trichloroethylene (TCE). Due to its limited solubility in water, a majority of the TCE is often present in the form of droplets. In this study, effective TCE droplet degradation using chelate-modified, iron-catalyzed free radical reactions at near-neutral pH was demonstrated. In order to predict the degradation of aqueous and non-aqueous phase TCE for these reactions, a mathematical model was constructed through the use of droplet mass transfer correlations and free radical reaction kinetics.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_diss-1166
Date01 January 2011
CreatorsLewis, Scott Romak
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of Kentucky Doctoral Dissertations

Page generated in 0.0022 seconds