Return to search

Robust Explicit Construction of 3D Configuration Spaces Using Controlled Linear Perturbation

We present robust explicit construction of 3D configuration spaces using controlled linear perturbation. The input is two planar parts: a fixed set and a moving set, where each set is bounded by circle segments. The configuration space is the three-dimensional space of Euclidean transformation (translations plus rotations) of the moving set relative to the fixed set. The goal of constructing the 3D configuration space is to determine the boundary representation of the free space where the intersection of the moving set and fixed set is empty. To construct the configuration space, we use the controlled linear perturbation algorithm. The controlled linear perturbation algorithm assigns function signs that are correct for a nearly minimal input perturbation. The output of the algorithm is a consistent set of function signs. This approach is algorithm-independent, and the overhead over traditional floating point methods is reasonable. If the fixed and moving sets are computer representations of physical objects, then computing the configuration space greatly aids in many computational geometry problems. The main focus of computing the configuration space is for the path planning problem. We must find if a path exists from the start to the goal, where the fixed set is the obstacle, and the moving set is the object trying to reach the goal.

Identiferoai:union.ndltd.org:UMIAMI/oai:scholarlyrepository.miami.edu:oa_dissertations-1188
Date19 December 2008
CreatorsTrac, Steven Cy
PublisherScholarly Repository
Source SetsUniversity of Miami
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceOpen Access Dissertations

Page generated in 0.0017 seconds