The frequency assignment (FAP) consists in assigning the frequency on the radio links of a network which satisfiesthe electromagnetic interference among the links. Given the limited spectrum resources for each application, the fre-quency resources are often insufficient to deploy a wireless network without interference. In this case, the network isover-contrained and the problem is infeasible. Our objective is to identify an area with heavy interference.The work presented here concerns the detection for one of these areas with an algorithmic approach based onmodeling the problem by CSP. The problem of frequency assignment can be modeled as a constraint satisfactionproblem (CSP) which is represented by a triple: a set of variables (radio links), a set of constraints (electromagneticinterference) and a set of available frequencies.The interfered area in CSP can be considered a subset of irreducible feasible subset (IIS). An IIS is a infeasiblesubproblem with irreducible size, that is to say that all subsets of an IIS are feasible. The identification of an IIS ina CSP refers to two general interests. First, locating an IIS can easily prove the infeasibility of the problem. Becausethe size of IIS is assumed to be smaller compared to the entire problem, its infeasibility is relatively easier to prove.Second, we can locate the reason of infeasibility, in this case, the decision maker can provide the solutions to relax theconstraints inside IIS, which perhaps leads to a feasible solution to the problem.This work proposes algorithms to identify an IIS in the over-constrained CSP. These algorithms have tested on the well known benchmarks of the FAP and of the problem of graph k-coloring. The results show a significant improve-ment on instances of FAP compared to known methods.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00823559 |
Date | 27 November 2012 |
Creators | Hu, Jun |
Publisher | Université de Technologie de Belfort-Montbeliard |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0016 seconds