<p>Industrial robot manipulators are general-purpose machines used for industrial automation in order to increase productivity, flexibility, and quality. Other reasons for using industrial robots are cost saving, and elimination of heavy and health-hazardous work. Robot motion control is a key competence for robot manufacturers, and the current development is focused on increasing the robot performance, reducing the robot cost, improving safety, and introducing new functionalities. Therefore, there is a need to continuously improve the models and control methods in order to fulfil all conflicting requirements, such as increased performance for a robot with lower weight, and thus lower mechanical stiffness and more complicated vibration modes. One reason for this development of the robot mechanical structure is of course cost-reduction, but other benefits are lower power consumption, improved dexterity, safety issues, and low environmental impact.</p><p>This thesis deals with three different aspects of modeling and control of flexible, i.e., elastic, manipulators. For an accurate description of a modern industrial manipulator, the traditional flexible joint model, described in literature, is not sufficient. An improved model where the elasticity is described by a number of localized multidimensional spring-damper pairs is therefore proposed. This model is called the extended flexible joint model. This work describes identification, feedforward control, and feedback control, using this model.</p><p>The proposed identification method is a frequency-domain non-linear gray-box method, which is evaluated by the identification of a modern six-axes robot manipulator. The identified model gives a good description of the global behavior of this robot.</p><p>The inverse dynamics control problem is discussed, and a solution methodology is proposed. This methodology is based on a differential algebraic equation (DAE) formulation of the problem. Feedforward control of a two-axes manipulator is then studied using this DAE approach.</p><p>Finally, a benchmark problem for robust feedback control of a single-axis extended flexible joint model is presented and some proposed solutions are analyzed.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-10463 |
Date | January 2007 |
Creators | Moberg, Stig |
Publisher | Linköping University, Linköping University, Automatic Control, Institutionen för systemteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, text |
Relation | Linköping Studies in Science and Technology. Thesis, 0280-7971 ; 1336 |
Page generated in 0.0026 seconds