Return to search

Dažnų sekų analizė sprendimų priėmimui labai didelėse duomenų bazėse / Frequent pattern analysis for decision making in big data

Didžiuliai informacijos kiekiai yra sukaupiami kiekvieną dieną pasaulyje bei jie sparčiai auga. Apytiksliai duomenų tyrybos algoritmai yra labai svarbūs analizuojant tokius didelius duomenų kiekius, nes algoritmų greitis yra ypač svarbus daugelyje sričių, tuo tarpu tikslieji metodai paprastai yra lėti bei naudojami tik uždaviniuose, kuriuose reikalingas tikslus atsakymas.
Ši disertacija analizuoja kelias duomenų tyrybos sritis: dažnų sekų paiešką bei vizualizaciją sprendimų priėmimui.
Dažnų sekų paieškai buvo pasiūlyti trys nauji apytiksliai metodai, kurie buvo testuojami naudojant tikras bei dirbtinai sugeneruotas duomenų bazes:
• Atsitiktinės imties metodas (Random Sampling Method - RSM) formuoja pradinės duomenų bazės atsitiktinę imtį ir nustato dažnas sekas, remiantis atsitiktinės imties analizės rezultatais. Šio metodo privalumas yra teorinis paklaidų tikimybių įvertinimas, naudojantis standartiniais statistiniais metodais.
• Daugybinio perskaičiavimo metodas (Multiple Re-sampling Method - MRM) yra RSM metodo patobulinimas, kuris formuoja kelias pradinės duomenų bazės atsitiktines imtis ir taip sumažina paklaidų tikimybes.
• Markovo savybe besiremiantis metodas (Markov Property Based Method - MPBM) kelis kartus skaito pradinę duomenų bazę, priklausomai nuo Markovo proceso eilės, bei apskaičiuoja empirinius dažnius remdamasis Markovo savybe.
Didelio duomenų kiekio vizualizavimui buvo naudojami pirkėjų internetu elgsenos duomenys, kurie analizuojami naudojant... [toliau žr. visą tekstą] / Huge amounts of digital information are stored in the World today and the amount is increasing by quintillion bytes every day. Approximate data mining algorithms are very important to efficiently deal with such amounts of data due to the computation speed required by various real-world applications, whereas exact data mining methods tend to be slow and are best employed where the precise results are of the highest important.
This thesis focuses on several data mining tasks related to analysis of big data: frequent pattern mining and visual representation.
For mining frequent patterns in big data, three novel approximate methods are proposed and evaluated on real and artificial databases:
• Random Sampling Method (RSM) creates a random sample from the original database and makes assumptions on the frequent and rare sequences based on the analysis results of the random sample. A significant benefit is a theoretical estimate of classification errors made by this method using standard statistical methods.
• Multiple Re-sampling Method (MRM) is an improved version of RSM method with a re-sampling strategy that decreases the probability to incorrectly classify the sequences as frequent or rare.
• Markov Property Based Method (MPBM) relies upon the Markov property. MPBM requires reading the original database several times (the number equals to the order of the Markov process) and then calculates the empirical frequencies using the Markov property.
For visual representation... [to full text]

Identiferoai:union.ndltd.org:LABT_ETD/oai:elaba.lt:LT-eLABa-0001:E.02~2013~D_20130701_092337-79289
Date01 July 2013
CreatorsPragarauskaitė, Julija
ContributorsBARONAS, ROMAS, AUGUTIS, JUOZAS, ČAPLINSKAS, ALBERTAS, ČENYS, ANTANAS, SAPAGOVAS, MIFODIJUS, BAREIŠA, EDUARDAS, KURASOVA, OLGA, Vilnius University
PublisherLithuanian Academic Libraries Network (LABT), Vilnius University
Source SetsLithuanian ETD submission system
LanguageLithuanian
Detected LanguageUnknown
TypeDoctoral thesis
Formatapplication/pdf
Sourcehttp://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130701_092337-79289
RightsUnrestricted

Page generated in 0.0021 seconds