Return to search

Storm event impact on organic matter flux, composition and reactivity in Taskinas Creek, VA

Carbon export from the land to the ocean are an important part of the global carbon cycle, linking terrestrial watersheds and the global carbon cycle. Burial of terrestrial organic carbon represents a long term sink for atmospheric CO2. Approximately 0.4 Pg Cy-1 is delivered to the global ocean from rivers, equally divided between POC and DOC. However, the amount of carbon entering the ocean is a small portion of the total amount entering rivers from the terrestrial environment, suggesting a large amount of processing in inland waters and estuaries. Most monitoring efforts have focused the processing of organic matter on baseflow conditions. However, recent studies have shown that POC and DOC exported during storm events, a small time period during a hydrologic year, can account for the majority of the annual carbon exported from small watersheds.
This dissertation identifies the impact different magnitudes of storm events have on the source, composition and reactivity of organic carbon released to downstream waters from the terrestrial environment at Taskinas Creek, Virginia. The proximity of the Creek to the York River estuary, the changes in water table at the site, along with the small size of the watershed allowing opportunity to examine the connectivity between the watershed processes and delivery of organic matter made the site ideal for identifying how hydrology and environment alter POM and DOM export and reactivity. The sources, composition and flux of DOM and POM were measured during four storm events of different magnitudes to determine how events impacted the sources and fluxes of organic matter and the % reactive DOC exported. Events of different magnitudes with varying sources of DOC and POC had similar % reactive DOC that was not predicted using excitation emission spectroscopy. The events resulted in DOC fluxes 1.5-490 fold higher than baseflow. POC fluxes for storm were 6.7-55 times higher than DOC fluxes. Although the % reactive DOC did not increase during storm event conditions, coupled with the overall flux, storm events represent a considerable pulse of % reactive DOC to downstream waters, well above baseflow levels. When considered with increases in storm intensity due to climate change, storm event fluxes of reactive OM may have broad impacts on estuaries and the global carbon cycle through changes in carbon storage.

Identiferoai:union.ndltd.org:wm.edu/oai:scholarworks.wm.edu:etd-1110
Date01 January 2015
CreatorsCammer, Sarah Schillawski
PublisherW&M ScholarWorks
Source SetsWilliam and Mary
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations, Theses, and Masters Projects
Rights© The Author

Page generated in 0.0023 seconds