A limited and extendable master thesis is representing the first step in the experimental substructuring of an A600 wind turbine. Additional masses have been designed, manufactured and added to the sub components for the laboratory experimental tests. Further preparations for dynamic experimental tests have been described and implemented. Vibrational tests of a modified wind turbine blade have been made using the Leuven Measurements System (LMS) for excitations and data acquisition purposes. The theory of frequency response function based substructuring applied on the wind turbine blade model is demonstrated. The theory and an example of a Matlab coded spring-mass system, an experimental model of a wind turbine blade and FRFs stemming from measurements are reported.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-36194 |
Date | January 2014 |
Creators | Al Kaysee, Ahmed, Wronski, Marek |
Publisher | Linnéuniversitetet, Institutionen för maskinteknik (MT), Linnéuniversitetet, Institutionen för maskinteknik (MT) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds