Return to search

Microstructural characterization of friction stir welded Ti-6Al-4V

Friction stir welding (FSWing) is a solid state, thermo-mechanical process that utilizes a non-consumable rotating weld tool to consolidate a weld joint. In the FSW process, the weld tool is responsible for generating both the heat required to soften the material and the forces necessary to deform and consolidate the former weld seam. Thus, weld tool geometry, material selection, and process parameters are important to the quality of the weld. To study the effects of the weld tool geometry on the resulting welds, a previous study was conducted using varying degree taper, microwave-sintered tungsten carbide (WC) weld tools to FSW Ti-6Al-4V. Fully consolidated welds were down selected for this study to evaluate the resulting mechanical properties and to document the microstructure. X-ray diffraction (XRD) was used to compare the parent material texture with that in the weld nugget. The purpose of this study is to quantify the temperatures obtained during FSWing by interpreting the resulting microstructure. This information is useful in process optimization as well as weld tool material selection.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-4093
Date08 August 2009
CreatorsRubisoff, Haley Amanda
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0031 seconds