Orientador: Marcelo da Silva Montenegro / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-11T08:16:43Z (GMT). No. of bitstreams: 1
Queiroz_OlivaineSantanade_D.pdf: 886346 bytes, checksum: 5fe477c4619e746d923fc51e7d78f55c (MD5)
Previous issue date: 2008 / Resumo: Estudamos a equação - D. u = x{ u>O} ( log u + )..1 (x, u)) em um domínio limitado e suave Ç1 C JR.n, com condições de fronteira u = O em é)Ç1. Demonstramos resultados de existência e regularidade da solução maximal. A positividade dessa solução depende do parâmetro ).. e de Ç1. Se a solução maximal se anula em partes de Ç1, obtemos uma estimativa local para a medida de Hausdorff da fronteira livre. Se a singularidade log u for trocada por -u-(3, com O < (3 < 1, então a teoria de Alt&Caffarelli e Alt&Phillips implica que a fronteira livre é regular. Também estudamos o problema de Neumann com não-linearidade logarítmica por meio de perturbações e técnicas variacionais / Abstract: We study the equation -D.u = X{u>O} (log u+Àf(x, u)) in a smooth bounded domain fl C JRn, with boundary conditions u = O on 8fl. We obtain existence and regularity of the maximal solution. The positivity of such a solution depends on the parameter À and on the domain fl. .If the maximal solution vanishes on a set of positive measure, then we obtain local estimates for the Hausdorff measure of the free boundary. If the singularity logu is replaced by -u-!3, with O < (3 < 1, the theory of Alt&Caffarelli and Alt&Phillips implies that the free boundary is regular. We also study the Neumann problem with logarithmic nonlinearity using perturbation techniques and variational methods / Doutorado / Doutor em Matemática
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/305904 |
Date | 26 June 2008 |
Creators | Queiroz, Olivâine Santana de, 1977- |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Montenegro, Marcelo da Silva, 1967-, Boldrini, José Luiz, Neves, Aloisio Freiria, Bergamasco, Adlaberto Panobianco, Tomei, Carlos, Teixeira, Eduardo Vasconcelos Oliveira |
Publisher | [s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | 103p. : il., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds