Return to search

Saccharide sensing by affinity mass sensors.

by Lee Tin-wan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 79-84). / Abstracts in English and Chinese. / Chapter 1. --- Introduction / Chapter 1.1 --- Chemical sensors --- p.1 / Chapter 1.2 --- Quartz crystal microbalance --- p.5 / Chapter 1.3 --- Film immobilization technologies --- p.11 / Chapter 1.4 --- Research Outlines --- p.13 / Chapter 2. --- Saccharide detection by affinity mass sensor / Chapter 2.1 --- Concept of affinity mass sensor --- p.15 / Chapter 2.1.1 --- Affinity chromatography --- p.15 / Chapter 2.1.2 --- Basis of affinity mass sensor --- p.17 / Chapter 2.1.3 --- Saccharide sensing --- p.19 / Chapter 2.2 --- Experimental --- p.20 / Chapter 2.2.1 --- Flow-through cell --- p.21 / Chapter 2.2.2 --- QCA 917 quartz crystal analyzer --- p.21 / Chapter 2.2.3 --- Experimental setup --- p.25 / Chapter 2.2.4 --- Sensor fabrication --- p.29 / Chapter 2.2.5 --- Analysis procedures --- p.29 / Chapter 2.3 --- Results and Discussion --- p.30 / Chapter 2.3.1 --- Formation of boronate complex --- p.30 / Chapter 2.3.2 --- Response curve --- p.31 / Chapter 2.3.3 --- Ligand (APBA) immobilization --- p.32 / Chapter 2.3.4 --- Effect of various operating parameters --- p.35 / Chapter 2.3.5 --- Calibration and reproducibility --- p.38 / Chapter 2.3.6 --- Kinetics analysis --- p.39 / Chapter 2.3.7 --- Stability of sensor --- p.44 / Chapter 2.3.8 --- Determination of fructose in real samples --- p.44 / Chapter 2.3.9 --- Comparison with conventional saccharides sensors --- p.46 / Chapter 2.4 --- Summary --- p.47 / Chapter 3. --- Sol-gel fabrication of affinity mass sensor / Chapter 3.1 --- Principle of sol-gel method --- p.48 / Chapter 3.2 --- Encapsulation of organic molecules in sol-gel matrices --- p.51 / Chapter 3.3 --- Experimental --- p.53 / Chapter 3.3.1 --- Preparation of alkoxide solutions --- p.53 / Chapter 3.3.2 --- Film deposition on QCM --- p.55 / Chapter 3.3.3 --- Film characterization and surface analysis --- p.56 / Chapter 3.4 --- Results and Discussion --- p.57 / Chapter 3.4.1 --- Optimization of conditions for sol-gel process --- p.57 / Chapter 3.4.1.1 --- Choice of catalyst --- p.57 / Chapter 3.4.1.2 --- "H2O: TEOS ratio, R" --- p.59 / Chapter 3.4.1.3 --- Ligand loading --- p.60 / Chapter 3.4.1.4 --- Surface active agent --- p.60 / Chapter 3.4.1.5 --- Temperature --- p.61 / Chapter 3.4.1.6 --- Ageing and drying --- p.62 / Chapter 3.4.2 --- Characterization of APBA encapsulated film --- p.62 / Chapter 3.4.3 --- Performance of the sol-gel derived sensor --- p.65 / Chapter 3.4.3.1 --- Calibration --- p.65 / Chapter 3.4.3.2 --- Stability --- p.66 / Chapter 3.4.3.3 --- Selectivity --- p.68 / Chapter 3.4.4 --- Applicability of the sol-gel derived sensor --- p.69 / Chapter 3.4.5 --- Comparison between sensors fabricated via crosslinking method and the sol-gel method --- p.70 / Chapter 3.4.5.1 --- Surface uniformity --- p.70 / Chapter 3.4.5.2 --- Reproducibility in mass deposition --- p.72 / Chapter 3.4.5.3 --- Stability --- p.72 / Chapter 3.4.5.4 --- Sensitivity towards fructose standard --- p.73 / Chapter 3.4.5.5 --- Comparison of precision and accuracy --- p.73 / Chapter 3.5 --- Summary --- p.75 / Conclusion --- p.77 / References --- p.79 / Titles for tables --- p.85 / Captions for figures --- p.86 / Appendix I --- p.88 / Appendix II --- p.89 / Appendix III --- p.95

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_322591
Date January 1999
ContributorsLee, Tin-wan., Chinese University of Hong Kong Graduate School. Division of Chemistry.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, 96 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0026 seconds