In this work, I seek to model swarms of fruit flies, drosophila melanogaster, whose flights are characterized by straight flight segments interrupted by rapid turns called saccades. These flights are reminiscent of Levy-distributed random walks which are known to lead to efficient search behavior. I build two types of model for swarms of foraging fruit flies, whose behavior depends on swarm density and chemoattractant concentration, using rules inspired by experimentally observed flight patterns. First I will present a Lagrangian model where the path of each individual fly is tracked. I will also consider an Eulerian model where the fruit fly density evolves as a function of time and position in space. I will discuss the advantages and disadvantages of the two models and the relationship between them.
Identifer | oai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:hmc_theses-1186 |
Date | 01 May 2006 |
Creators | Majkut, Joesph |
Publisher | Scholarship @ Claremont |
Source Sets | Claremont Colleges |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | HMC Senior Theses |
Page generated in 0.002 seconds