Return to search

Vibrational characterisation of coordination and biologically active compounds by means of IR absorption, Raman and surface-enhanced Raman spectroscopy in combination with theoretical simulations / Schwingungsspektroskopische Untersuchungen an Koordinationsverbindungen und biologisch aktiven Moleküle mittels IR-Absorptions-, Raman- und Oberflächenverstärkten Raman-Spektroskopie in Kombination mit theoretischen Simulationen

The thesis contains two major parts. The first part deals with structural investigations on different coordination compounds performed by using infrared absorption and FT-Raman spectroscopy in combination with density functional theory calculations. In the first section of this part the starting materials Ph2P-N(H)SiMe3 and Ph3P=NSiMe3 and their corresponding [(MeSi)2NZnPh2P-NSiMe3]2 and Li(o-C6H4PPh2NSiMe3)]2·Et2O complexes have been investigated in order to determine the influence of the metal coordination on the P–N bond length. In the next section the vibrational spectra of four hexacoordinated silicon(IV) and germanium(IV) complexes with three symmetrical bidentate oxalato(2-) ligands have been elucidated. Kinetic investigations of the hydrolysis of two of them, one with silicon and another one with germanium, have been carried out at room temperature and at different pH values and it was observed that the hydrolysis reaction occurs only for the silicon compound, the fastest reaction taking place at acidic pH. In the last section of this part, the geometric configurations of some hexacoordinated silicon(IV) complexes with three unsymmetrical bidentate hydroximato(2-) ligands have been determined. The second part of the thesis contains vibrational investigations of some biologically active molecules performed by means of Raman spectroscopy together with theoretical simulations. The SER spectra of these molecules at different pH values have also been analysed and the adsorption behaviour on the metal surface as well as the influence of the pH on the molecule-substrate interaction have been established. / Die vorliegende Arbeit besteht aus zwei Teilen. Der erste Teil beschäftigt sich mit strukturelle Untersuchungen einiger Koordinationsverbindungen mittels IR- und Raman-Spektroskopie in Kombination mit quantenchemischen Rechnungen basierend auf der Dichtefunktionaltheorie. In ersten Kapitel dieses Teils wurden die Edukten Ph2P-N(H)SiMe3 (1a) und Ph3P=NSiMe3 (1b) und ihren entsprechenden Metallkomplexen [(Me3Si)2NZnPh2PNSiMe3]2 (2a) und [Li(o-C6H4PPh2NSiMe3)]2·EtO (2b) untersucht, um so den Einfluss der Koordination zu einem Metallzentrum auf die P-N-Bindungslänge festzustellen. In nächsten Kapitel wurden die IR- und Raman-Spektren einiger neuer hexakoordinierten Silizium(IV)- und Germanium(IV)-Komplexe mit drei symmetrischen zweizähnigen Oxalato(2-)-Liganden untersucht. Zudem wurden noch kinetische Untersuchungen der Hydrolyse zweier Silizium- bzw. Germanium-Komplexe durchgeführt und es konnte festgestellt werden, dass die Hydrolysereaktion nur im Fall des Siliziumkomplexes auftritt. Die Geschwindigkeitskonstanten wurden bei Raumtemperatur für unterschiedliche pH-Werte bestimmt. Somit konnte gezeigt werden, dass die Reaktion am schnellsten im Säuren abläuft. In letzten Kapitel wurde die Konformation einiger hexakoordinierter Silizium(IV)-Komplexe mit drei antisymmetrischen zweizähnigen Liganden vom Hydroximato(2-)-Typ aufgeklärt. Im zweiten Teil der vorliegenden Arbeit wurden Raman-Spektroskopie in Kombination mit theoretischen Berechnungen zur Schwingungscharakterisierung einiger biologisch aktiver Moleküle angewandt. Die SER-Spektren für unterschiedliche pH-Werte wurden untersucht, um die Adsorptionsverhalten auf der Silberoberfläche zu beschreiben.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:385
Date January 2002
CreatorsBolboaca, Monica-Maria
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds