<p>A compact Riemann surface can be realized as a quotient space $\mathcal{U}/\Gamma$, where $\mathcal{U}$ is the sphere $\Sigma$, the euclidian plane $\mathbb{C}$ or the hyperbolic plane $\mathcal{H}$ and $\Gamma$ is a discrete group of automorphisms. This induces a covering $p:\mathcal{U}\rightarrow\mathcal{U}/\Gamma$.</p><p>For each $\Gamma$ acting on $\mathcal{H}$ we have a polygon $P$ such that $\mathcal{H}$ is tesselated by $P$ under the actions of the elements of $\Gamma$. On the other hand if $P$ is a hyperbolic polygon with a side pairing satisfying certain conditions, then the group $\Gamma$ generated by the side pairing is discrete and $P$ tesselates $\mathcal{H}$ under $\Gamma$.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-7968 |
Date | January 2006 |
Creators | Bartolini, Gabriel |
Publisher | Linköping University, Department of Mathematics, Matematiska institutionen |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0017 seconds