Return to search

Performance of Transverse Post-Tensioned Joints Subjected to Negative Bending and Shear Stresses on Full Scale, Full Depth, Precast Concrete Bridge Deck System

Accelerated bridge construction has quickly become the preferred method for the Utah Department of Transportation (UDOT) as well as many other DOT’s across the United States. This type of construction requires the use of full depth precast panels for the construction of the bridge deck. The segmented deck panels produce transverse joints between panels and have come to be known as the weakest portion of the deck. Cracking often occurs at these joints and is reflected through the deck overlay where water accesses and begins corrosion of the reinforcement and superstructure below. For this reason post-tensioning of the deck panels is becoming a regular practice to ensure that the deck behaves more monolithically, limiting cracking. The current post-tensioning used by UDOT inhibits future replacement of single deck panels and requires that all panels be replaced once one panel is deemed defective. The new curved bolt connection provides the necessary compressive stresses across the transverse joints but makes future replacement of a single deck panel possible without replacing the entire bridge deck. To better understand the behavior of the new curved bolt connection under loadings, laboratory testing was undertaken on both the curved bolt and the current post-tensioning used by UDOT. The testing specimens included full-scale, full-depth, precast panels that were connected using both system. The testing induced typical stresses on the panels and connections, subjecting them to negative bending and shear. The overall performance of the curved bolt proved satisfactory. The moment capacity of both connections surpassed all theoretical calculations. The yield and plastic moments were 17% and 16% lower, respectively, than the UDOT post-tension system while at those moments deflection was relatively the same. Due to the anchorage location of the curved bolts, the reinforcement around the transverse joint received up to 5 times the strain of that of the post-tension connections. Although both systems performed well when subjected to shear forces and as compared to the theoretical capacities, the post-tension connection greatly surpassed the curved bolt in shear capacity.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-1930
Date01 May 2011
CreatorsRoberts, Kayde Steven
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0027 seconds