Return to search

Strawberry Growth, Yield, Fruit Nutrition, and Control of Verticillium Wilt with Pre-plant Soil Fumigants, Ozone, and Biological Control

Verticillium wilt is a widespread soilborne disease of strawberry historically controlled by soil fumigation with methyl bromide (MB). MB was banned by the United Nations in 1995 and will be completely phased out by 2015. Research has concentrated on alternative methods of disease control without finding a single alternative able to replace MB in widespread disease control and yield increase. For the current study, strawberries were greenhouse grown in container pots filled with soil from both infested and non-infested areas of a commercial strawberry field in Watsonville, CA. Treatments included pre-plant soil fumigation with commercially available formulations of methyl bromide, chloropicrin, and 1, 3-Dichloropropene. Additional treatments included ozone gas (six treatments) and biological control (three treatments). Collected data included total plant yield, individual berry weight, number of fruit produced per plant, plant vegetative weight, infection status, and mineral concentration of fruit (calcium, magnesium, potassium, iron, zinc, manganese, carbon, and nitrogen). Plants grown in ‘clean’ soil were less likely than plants grown in ‘infested’ soil to be infected with Verticillium. Plants grown in soil treated with MB had higher plant weight and yield than did non-treated control. Ozone and biological control treatments did not have statistically higher yield than non-treated control plants nor statistically lower yield than plants grown in soil treated with MB. Individual berry weights had a narrow range while the number of berries produced per treatment had a wide range. Data suggests strawberry yield is dependent on the number of berries produced per plant. Plants with high vegetative weight produced the highest yield suggesting large plants produce many berries resulting in higher yield.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-1756
Date01 April 2012
CreatorsScurich, Justin J
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.0015 seconds