Esta dissertação trata do Princípio da similaridade para as soluções das equações da forma L\'OMEGA\' = A(z) ·\'OMEGA\' + B(z) · \'BARRA\' \'omega\' , sendo L um campo vetorial complexo não singular e A,B \'PERTENCE\' \'C POT. sigma\' (\'R POT. 2\'), com 0 < \'sigma\' < 1. Aqui são apresentados resultados para o campo vetorial elítico L = \'PARTIAL SUP\' \'\'PARTIAL\' z e para classes de campos vetoriais elíticos degenerados / This dissertation deals with the Similarity principle for solutions of equations of the form L \'omega\' = A(z) · \'omega\' + B(z) · \' BARRA\' \'omega\' where L is a nonsingular complex vector field and A,B \'IT BELONGS\' \'C POT. sigma \' (\'R POT. 2\'), with 0 < \'sigma\' < 1. Here are presented results for elliptic vector field and for classes of degenerate elliptic vector fields
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-02042014-142433 |
Date | 26 February 2014 |
Creators | Calcina, Sabrina Graciela Suárez |
Contributors | Silva, Paulo Leandro Dattori da |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0019 seconds