The Lie symmetry groups of minimal surfaces by way of planar harmonic functions are determined. It is shown that a symmetry group acting on the minimal surfaces is isomorphic with H × H^2 — the analytic functions and the harmonic functions. A subgroup of this gives a generalization of the associated family which is examined.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-1320 |
Date | 18 June 2004 |
Creators | Berry, Robert D. |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0015 seconds