D'abord, on étudie trois façons d'associer une C*-algèbre à une transformation continue. Ensuite, nousdonnons une nouvelle définition de l'entropie. Nous trouvons des relations entre les états KMS des algèbrespréalablement définies et les états d'équilibre, donné par un principe variationnel. Dans la seconde partie,nous étudions les algèbres de Kajiwara-Watatani associées à un système des fonctions itérées. Nouscomparons ces algèbres avec l'algèbre de Cuntz et le produit croisé. Enfin, nous étudions les états KMS desalgèbres de Kajiwara-Watatani pour les actions provenant d'un potentiel et nous trouvouns des relationsentre ces états et les mesures trouvée dans une version de le théorème de Ruelle-Perron-Frobenius pour lessystèmes de fonctions itérées. / First, we study three ways of associating a C*-algebra to a continuous map. Then, we give a new definitionof entropy. We relate the KMS states of the previously defined algebras with the equilibrium states, givenby a variational principle. In the second part, we study the Kajiwara-Watatani algebras associated toiterated function system. We compare these algebras with the Cuntz algebra and the crossed product.Finally, we study the KMS states of the Kajiwara-Watatani algebras for actions coming from a potentialand we relate such states with measures found in a version of the Ruelle-Perron-Frobenius theorem foriterated function systems.
Identifer | oai:union.ndltd.org:theses.fr/2009ORLE2074 |
Date | 18 December 2009 |
Creators | De Castro, Gilles |
Contributors | Orléans, Universidade Federal do Rio Grande do Sul (Porto Alegre, Brésil), Renault, Jean, Lopes, Artur Oscar |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | Portuguese, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds