This thesis presents a method for integrating heterogeneous gene/protein datasets at the functional level based on Gene Ontology term similarity. Often biologists want to integrate heterogeneous data sets obtain from different biological samples. A major challenge in this process is how to link the heterogeneous datasets. Currently, the most common approach is to link them through common reference database identifiers which tend to result in small number of matching identifiers. This is due to lack of standard accession schemes. Due to this problem, biologists may not recognize the underlying biological phenomena revealed by a combination of the data but by each data set individually. We discuss an approach for integrating heterogeneous datasets by computing the similarity among them based on the similarity of their GO annotations. Then we group the genes and/or proteins with similar annotations by applying a hierarchical clustering algorithm. The results demonstrate a more comprehensive understanding of the biological processes involved.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-1175 |
Date | 11 December 2009 |
Creators | Thanthiriwatte, Chamali Lankara |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0019 seconds