The Riemann zeta function ζ(s) is one of the most fundamental functions in number theory. Euler demonstrated that ζ(s) is closely connected to the prime numbers and Riemann gave proofs of the basic analytic properties of the zeta function. Values of the zeta function and its derivatives have been studied by several mathematicians. Apostol in particular gave a computable formula for the values of the derivatives of ζ(s) at s = 0. The Hurwitz zeta function ζ(s,q) is a generalization of ζ(s). We modify Apostolʼs methods to find values of the derivatives of ζ(s,q) with respect to s at s = 0. As a consequence, we obtain relations among certain important constants, the generalized Stieltjes constants. We also give numerical estimates of several values of the derivatives of ζ(s,q).
Identifer | oai:union.ndltd.org:WKU/oai:digitalcommons.wku.edu:theses-2093 |
Date | 01 August 2011 |
Creators | Musser, Jason |
Publisher | TopSCHOLAR® |
Source Sets | Western Kentucky University Theses |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses & Specialist Projects |
Page generated in 0.0044 seconds