Return to search

Molecular and Structural Characterization of Proteins Involved in Bacterial Adaptive Responses

Bacteria are remarkable in their ability to adapt to environmental conditions that are continually in flux between growth-promoting and growth-limiting. Responses to a host of environmental situations are equally varied, ranging from the secretion of antimicrobial compounds and polymer degrading enzymes, to the up-regulation of alternative cellular developmental pathways leading to complete physiological transformation. In endospore forming bacteria this results in a metabolically inert, yet highly resistant endospore. The first study presented here deals with the NMR structural and dynamic characterization of a class of proteins in Bacillus subtilis known as transition-state regulators, responsible for global gene regulation during the transition from the vegetative mode of growth to the semi-quiescent stationary phase. The utilization of protein-DNA docking protocols further allows for the first description of a structural model for the interaction between these DNA-binding proteins and a cognate DNA promoter sequence. The later portions of this dissertation deal with the characterization of proteins involved in the ubiquitous bacterial signal transduction system known as the two-component signal transduction pathway. In the basic two-component signal transduction paradigm, an environmental signal is detected by a multi-domain sensor kinase that, via phosphorylation, activates a response regulator protein for its cellular role (be it DNA-binding, RNA-binding, enzymatic, etc). In the second study, a comparative modeling analysis of the predicted receiver domains the response regulators from Vibrio vulnificus YJ016 was performed, using the hydrophobic characteristics of the response regulator surface known to interact with the four-helix bundle of the cognate sensor kinase as the basis for sub-classification. In the final study, a new mass spectrometric technique to detail the structural changes in proteins resulting from oxidative damage was applied to the single domain response regulator Spo0F from B. subtilis.

Identiferoai:union.ndltd.org:NCSU/oai:NCSU:etd-03252008-122146
Date22 April 2008
CreatorsSullivan, Daniel Michael
ContributorsDr. William Miller, Dr. David Bird, Dr. Dennis Brown, Dr. John Cavanagh
PublisherNCSU
Source SetsNorth Carolina State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://www.lib.ncsu.edu/theses/available/etd-03252008-122146/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dis sertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to NC State University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0668 seconds