Performance is key to survival. From day-to-day foraging events, to reproductive activities, to life-or-death crises, how well an organism performs these tasks can determine success or failure. Selection, therefore, both natural and sexual, act upon performance, and performance demands on individuals shape a population’s morphological and physiological trait distributions. While studies of morphological adaptations to ecological pressures implicitly center on the idea that responses to selection improve performance via changes in morphology, the relationships between morphology, performance, and fitness are not always well understood. In this dissertation, I investigate these relationships explicitly, as well as determine the effects that different ecological and genetic contexts have on selection and how populations respond to performance pressures.
Using a model of lizard locomotor performance, I address three issues that may impact selection on performance that are often overlooked in performance studies. First, performance is not a static trait. Rather, individuals possess a range of performance abilities or intensities that can be expressed as needed. Using a novel, individual-based, quantitative genetic simulation model, I demonstrate the effects of variable performance expression and genetic constraints on how a population experiences and responds to selection on sprint and endurance performance. Second, sex differences in performance are expected in sexually dimorphic species, but empirical evidence for this is lacking. To this end, I measured and analyzed multivariate morphology and performance in Anolis carolinensis to identify sex-specific patterns in functional morphology and functional trade-offs within a broad suite of performance traits. Third, intralocus sexual conflict should constrain the evolution of the multivariate performance phenotype in both sexes. By extending the simulation model to include correlated trait inheritance between sexes and sex-specific selection on certain performance traits, I demonstrate the extent to which this sexual conflict constrains performance evolution. In combining studies of natural populations with simulation studies of selection, this dissertation embraces the complexity of performance to address the multiple contributing factors and constraints on performance evolution, and demonstrates the importance of accounting for such complexity when studying animal performance.
Identifer | oai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-3568 |
Date | 20 December 2017 |
Creators | Cespedes, Ann M., PhD |
Publisher | ScholarWorks@UNO |
Source Sets | University of New Orleans |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of New Orleans Theses and Dissertations |
Page generated in 0.0022 seconds