Heterodinuclear and homodinuclear metal complexes with a direct metal-metal interaction offer the potential for unique catalysis due to cooperativity effects that impact reaction mechanisms, reactivity, and selectivity. Quantum-chemical density functional theory (DFT) calculations can directly examine the origin of dinuclear reactivity and selectivity effects. Chapter 1 provides a short overview of heterodinuclear and homodinuclear catalysts that have been experimentally and computationally examined. Chapter 2 reports our study using DFT methods to understand the mechanism and reactivity of a heterodinuclear Co-Zr catalyst with phosphinoamide ligands that catalyzes a Kumada coupling between alkyl halides and alkyl Grignards. Chapter 3 reports DFT calculations that determine the mechanism for homodinuclear Ni-Ni promoted intramolecular vinylidene"“alkene cyclization.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-10796 |
Date | 14 December 2022 |
Creators | Coombs III, James Curtis |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | https://lib.byu.edu/about/copyright/ |
Page generated in 0.002 seconds