The objective of this study is to determine stress intensity factors (SIFs) for a crack in a radially graded FGM layer on a substrate. Functionally graded coating with an edge crack perpendicular to the interface and a homogeneous substrate are bonded together. In order to make the problem analytically tractable, geometry is modeled as an FGM strip attached to a homogeneous layer. Introducing the elastic foundation underneath the homogeneous layer, an FGM coating on a thin walled cylinder can be modeled. At first, governing equations are obtained from stress displacement and equilibrium equations. Then using an assumed form of solution in terms of Fourier Transforms for displacements and applying the boundary conditions, a singular integral equation is obtained for the mode-I problem. Solving this singular integral equation numerically, stress intensity factors are obtained as functions of crack length, strip thicknesses and inhomogeneity parameter.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/3/12609120/index.pdf |
Date | 01 December 2007 |
Creators | Cetin, Suat |
Contributors | Kadioglu, Suat |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0025 seconds