Return to search

Mixed-mode Fracture Analysis Of Orthotropic Functionally Graded Materials

Functionally graded materials processed by the thermal spray techniques such as electron beam physical vapor deposition and plasma spray forming are known to have an orthotropic structure with reduced mechanical properties. Debonding related failures in these types of material systems occur due to embedded cracks that are perpendicular to the direction of the material property gradation. These cracks are inherently under mixed-mode loading and fracture analysis requires the extraction of the modes I and II stress intensity factors. The present study aims at developing semi-analytical techniques to study embedded crack problems in graded orthotropic media under various boundary conditions. The cracks are assumed to be aligned parallel to one of the principal axes of orthotropy. The problems are formulated using the averaged constants of plane orthotropic elasticity and reduced to two coupled integral equations with Cauchy type dominant singularities. The equations are solved numerically by adopting an expansion - collocation technique. The main results of
the analyses are the mixed mode stress intensity factors and the energy release rate as functions of the material nonhomogeneity and orthotropy parameters. The effects of
the boundary conditions on the mentioned fracture parameters are also duly discussed.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12606451/index.pdf
Date01 November 2005
CreatorsSarikaya, Duygu
ContributorsDag, Serkan
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0025 seconds