Return to search

3D modelling of functionally graded coatings

The purpose of this study is to investigate the behaviour of functionally graded materials in the coating design through analytical and numerical work. Functionally graded materials are advanced composite materials formed from two or more constituents with a continuously varying composition, which results in a continuous variation of material properties from one surface of the material to the other. The concept of functionally graded material is actively explored in coating design where structural and/or functional failures of the coating can happen due to a mismatch between the material properties of the coating and substrate, particularly at the coating/substrate interface. This work focuses on the performance of coated plates with homogeneous and graded coatings under various types of loading to develop a better understanding of their response. Firstly, the three dimensional elasticity solution for an isotropic coated plate with a stiffness gradient in the coating is extended to cover different types of applied loading and then a three dimensional elasticity solution for transversely isotropic materials with gradients in elastic properties is also developed. Based on the extended/developed solutions, a MATLAB code is created to produce a model that would enable the analysis of coated plates for a range of material, geometric and loading parameters. To test the analytical models, a finite element analysis is performed using the commercial finite element software ABAQUS, in which a user material subroutine is employed to generate a gradient in the material properties within each element and increase the accuracy of the results. All the developed analytical and numerical models are then used to carry out a comparative study of three-dimensional stress and displacement fields in the coated plates with homogeneous and graded coatings and establish the effect of various parameters such as coating thickness, coating position, plate dimensions, stiffness gradient, loading distributions and anisotropy on the coated plate response.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:633278
Date January 2014
CreatorsHeidari, Maryam
PublisherUniversity of Aberdeen
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=215382

Page generated in 0.0019 seconds