Return to search

Segmentace cévního řečiště v retinálních obrazových datech / Blood vessel segmentation in retinal image data

This master´s thesis deals with blood vessel segmentation in retinal image data. The theoretical part is focused on the basic description of anatomy and physiology of the eye and methods of observing the back of the eye. This thesis also describes the principles of classical and convolutional neural networks and segmentation techniques that are used to segment blood vessel in retinal images. In the practical part, a segmentation method using convolutional neural network U-net is implemented. This neural network is trained on the three datasets. Two datasets include images from experimental video ophthalmoscope. Because it impossible to compare the results of these two datasets with any other methods of retinal blood vessel segmentation, U-net is trained on other dataset that is HRF database. This dataset includes fundus images. The results of testing on this dataset serves for comparing results with other methods of retinal blood vessel segmentation.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:400975
Date January 2019
CreatorsVančurová, Johana
ContributorsMézl, Martin, Odstrčilík, Jan
PublisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.002 seconds