Return to search

Viena jungtinė universalumo teorema / One joint universality theorem

Magistro darbo tikslas yra įrodyti Mišu teoremos analogą funkcijoms L(s,&#967;) ir &#950;(s,&#945;) su transcendenčiuoju parametru &#945;. / Let L(s,&#967;),s=&#963;+it, denote the Dirichlet L – function, and &#950;(s,&#945;) be the Hurwitz zeta-function with parameter &#945;,0<&#945;&#8804;1. We prove the following statment. Suppose that the number &#945; is transcendental, and K_1 and K_2 are compact subsets of strip D={ s&#8714; C: 1/2<&#963;<1} with connected complements. Let f_1 (s) be a continuous non-vanishing function on K_1 which is analytic in the interior of K_1, and f_2 (s) be a continuous function on K_2, and analytic in the interior of K_2. Then, for every &#949;>0, liminf&#9516;(T&#8594;&#8734;)&#8289;&#12310;1/T meas{&#964;&#8714;[0;T]: &#12310;sup&#12311;&#9516;(s&#8714;K_1 )&#8289;&#12310;|L(s+i&#964;,&#967;)-f_1 (s) |<&#949;&#12311;, sup&#9516;(s&#8714;K_2 )&#8289;&#12310;|&#950;(s+i&#964;,&#945;)-f_2 (s) |<&#949;&#12311;}&#12311;>0. There meas{A} denotes the Lebesgue measure of a measurable set A&#8834;R.

Identiferoai:union.ndltd.org:LABT_ETD/oai:elaba.lt:LT-eLABa-0001:E.02~2011~D_20140701_164124-31834
Date01 July 2014
CreatorsJanulis, Kęstutis
ContributorsLaurinčikas, Antanas, Vilnius University
PublisherLithuanian Academic Libraries Network (LABT), Vilnius University
Source SetsLithuanian ETD submission system
LanguageLithuanian
Detected LanguageEnglish
TypeMaster thesis
Formatapplication/pdf
Sourcehttp://vddb.library.lt/obj/LT-eLABa-0001:E.02~2011~D_20140701_164124-31834
RightsUnrestricted

Page generated in 0.0016 seconds