This master thesis work examines whether it is possible to separate lead from an electrolytic sludge rich in manganese using pyrometallurgical treatment, and also attempts to determine the optimum process parameters for such a treatment. It also includes a theoretical study of the possible applications for lead and manganese, as well as thermodynamic calculations predicting the behaviour of the material at increasing temperatures. The experimental work completed includes characterisation and agglomeration of the raw material, as well as tests in a chamber furnace and a rotary furnace. The anode sludge was characterised using chemical analysis, XRD, SEM and PSD. The anode sludge was agglomerated into pellets using either both bentonite and water, or only water as binder. The smaller scale tests in the chamber furnace examined the impact of several variables on lead removal. These variables included type and amount of reduction agent used, temperature, and whether the anode sludge was added as untreated material or pellets. The most promising of these results were further tested in the rotary furnace at a slightly larger scale. The variables used for the rotary furnace tests were amount of reduction agent added, whether the anode sludge was added as untreated material or pellets, and whether the reduction agent was added at the start of or during the experiment. All samples were sent for chemical analysis, and selected samples were further analysed using XRD and SEM. The conclusions drawn from the results of the thermodynamic calculations and experimental work are as follows: In the untreated anode sludge the primary phases are MnO2, CaSO4, and (Pb,Sr)SO4. The anode sludge can be agglomerated into pellets, with or without added binder. After treatment the primary phases present are MnO and (Ca,Sr)2SiO4. Lead is present as small separate grains. The most effective treatment method should adhere to the following parameters:Use of a rotating furnace. Anode sludge added in the form of pellets, to simplify materials handling. Temperature of 1400-1500 °C. Reduction agent added in batches after initial smoke formation has stopped. Total addition of reduction agent should be 10 wt% of anode sludge. Significant weight loss occurs during treatment. The amount of reduction agent added to the anode sludge has the greatest effect on the removal of lead and zinc. Charcoal is a potential candidate for a renewable reduction agent, but leads to increased weight loss. It is possible to separate lead from the manganese anode sludge using pyrometallurgical treatment, down to 100 ppm. Zinc can also be separated, down to 600 ppm. / Detta examensarbete undersöker huruvida det är möjligt att separera bly från ett anodslam rikt i mangan med hjälp av pyrometallurgiska behandlingsmetoder, och försöker även avgöra de optimala processparametrarna för en sådan behandling. Arbetet inkluderar även en teoristudie av möjliga användningsområden för bly och mangan, samt termodynamiska beräkningar som förutser materialets beteende vid ökande temperaturer. Det experimentella arbetet som utförts inkluderar karakterisering och agglomerering av råmaterialet, samt försök i en kammarugn och en rullugn. Anodslammet karakteriserades med hjälp av kemisk analys, XRD, SEM, och partikelstorleksfördelning. Anodslammet agglomererades till pellets med antingen bentonit och vatten eller bara vatten som bindemedel. Försöken i mindre skala i kammarugnen undersökte hur flera variabler påverkade blyavdrivningen. Dessa variabler inkluderade typ och mängd av reduktionsmedel som tillsattes, temperatur, och huruvida anodslammet som användes var obehandlat material eller pellets. De mest lovande av dessa resultat användes för vidare försök i rullugnen i något större skala. Variablerna som undersöktes vid rullugnsförsöken var mängd reduktionsmedel som tillsattes, huruvida anodslammet som användes var obehandlat material eller pellets, samt huruvida reduktionsmedlet tillsattes vid start eller under försökets gång. Alla prover skickades för kemisk analys, och utvalda prover analyserades ytterligare med XRD och SEM. Slutsatserna som dragits utifrån resultaten av de termodynamiska beräkningarna och det experimentella arbetet är som följande: I det obehandlade anodslammet är de primära faserna MnO2, CaSO4, och (Pb,Sr)SO4. Anodslammet kan agglomereras till pellets. Efter behandling är de primära faserna i materialet MnO och (Ca,Sr)2SiO4. Kvarvarande bly är närvarande som små separata korn. Den mest effektiva behandlingsmetoden bör använda följande parametrar: Användning av en roterande ugn. Anodslam bör tillsättas i form av pellets för att underlätta materialhantering. Temperatur mellan 1400-1500 °C. Reduktionsmedel tillsatt i omgångar efter att initial rökbildningen avstannat. Total tillsats av reduktionsmedel bör vara 10 vikt% av anodslammets vikt. Signifikanta viktförluster under behandling. Mängden tillsatt reduktionsmedel är den faktor som har störst effekt på avlägsnandet av bly och zink. Träkol är en potentiell kandidat för ett förnyelsebart reduktionsmedel, men orsakar ökade viktförluster. Det är möjligt att separera bly från mangan med hjälp av pyrometallurgiska metoder, ned till 100 ppm bly. Zink kan också separeras, ned till 600 ppm.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-65751 |
Date | January 2017 |
Creators | Stenman, Johan |
Publisher | Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds