Nas últimas décadas, as texturas dinâmicas ou texturas temporais, que são texturas com movimento, tornaram-se objetos de intenso interesse por parte de pesquisadores das áreas de processamento digital de imagens e visão computacional. Várias técnicas vêm sendo desenvolvidas, ou aperfeiçoadas, para a extração de características baseada em texturas dinâmicas. Essas técnicas, em vários casos, são a combinação de duas ou mais metodologias pré-existentes que visam apenas a extração de características e não a melhora da qualidade das características extraídas. Além disso, para os casos em que as características são \"pobres\" em qualidade, o resultado final do processamento poderá apresentar queda de desempenho. Assim, este trabalho propõe descritores que extraiam características dinâmicas de sequências de vídeos e realize a fusão de informações buscando aumentar o desempenho geral na segmentação e/ou reconhecimento de texturas ou cenas em movimento. Os resultados obtidos utilizando-se duas bases de vídeos demonstram que os descritores propostos chamados de D-LMP e D-SLMP foram superiores ao descritor da literatura comparado e denominado de LBP-TOP. Além de apresentarem taxas globais de acurácia, precisão e sensibilidade superiores, os descritores propostos extraem características em um tempo inferior ao descritor LBP-TOP, o que os tornam mais práticos para a maioria das aplicações. A fusão de dados oriundos de regiões com diferentes características dinâmicas aumentou o desempenho dos descritores, demonstrando assim, que a técnica pode ser aplicada não somente para a classificação de texturas dinâmicas em sí, mas também para a classificação de cenas gerais em vídeos. / In the last decades, the dynamic textures or temporal textures, which are textures with movement, have become objects of intense interest on the part of researchers of the areas of digital image processing and computer vision. Several techniques have been developed, or perfected, for feature extraction based on dynamic textures. These techniques, in several cases, are the combination of two or more pre-existing methodologies that aim only the feature extraction and not the improvement of the quality of the extracted features. Moreover, in cases that the features are \"poor\" in quality, the final result of processing may present low performance. Thus, this work proposes descriptors that extract dynamic features of video sequences and perform the fusion of information seeking to increase the overall performance in the segmentation and/or recognition of textures or moving scenes. The results obtained using two video bases show that the proposed descriptors called D-LMP and D-SLMP were superior to the descriptor of the literature compared and denominated of LBP-TOP. In addition to presenting higher overall accuracy, precision and sensitivity rates, the proposed descriptors extract features at a shorter time than the LBP-TOP descriptor, which makes them more practical for most applications. The fusion of data from regions with different dynamic characteristics increased the performance of the descriptors, thus demonstrating that the technique can be applied not only to the classification of dynamic textures, but also to the classification of general scenes in videos.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-07112017-112730 |
Date | 21 September 2017 |
Creators | Langoni, Virgílio de Melo |
Contributors | Gonzaga, Adilson |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0031 seconds