Return to search

Efforts Towards Functionalizing a DNAzyme for Non-Invasive Colorectal Cancer Detection / DNAzyme for Non-Invasive Colorectal Cancer Detection

The need for a non-invasive, accurate, easy-to-use, and cost-effective colorectal cancer (CRC) detection device is apparent in the low survival rates seen in late-stage diagnoses. Once CRC has progressed past stage I, the 5-year survival rate drops significantly, and treatment options become less favourable. The best way to treat CRC is to catch it early. The development of an RNA-cleaving fluorogenic DNAzyme (RFD) holds the potential to remediate this deficiency. A DNAzyme, called RFD-FN1, was identified from a synthetic random-sequence DNA library to selectively bind to an unknown target associated with Fusobacterium nucleatum, which has been found to be overabundant in pre- and cancerous colorectal tissue and stool. Target recognition by the DNAzyme induces the cleavage of a fluorogenic substrate and generates a fluorescent signal to indicate the presence of the bacterium. This thesis outlines the efforts made towards functionalizing the F. nucleatum-responsive probe in stool samples to create a non-invasive screening test.
RFD-FN1 is selective towards a heat-stable F. nucleatum protein, but its limit of detection is only 10^7 CFU/mL. Although able to detect spiked concentrations of F. nucleatum cells in processed stool samples, the use of heat, filtering, centrifugation, antibiotics, culturing or serial dilutions are not sufficient to detect the F. nucleatum that is naturally present in the diseased samples. Experiments designed to enrich the target concentration revealed that the target is not produced consistently in any growing condition tested.
Size exclusion chromatography and mass spectrometry analysis identified five potential targets that RFD-FN1 may be responding to. Three candidate targets were cloned and purified, but they failed to induce RFD-FN1’s activity. Due to the COVID-19 pandemic, the purification of the final two proteins was not completed. Purifying the two candidate targets and testing their ability to induce RFD-FN1 represents future research efforts. If the target for the DNAzyme is confirmed, a reselection for a more sensitive DNAzyme, that can function in human stool, can be attempted. / Thesis / Master of Health Sciences (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/25761
Date January 2020
CreatorsMorrison, Devon
ContributorsLi, Yingfu, Biochemistry and Biomedical Sciences
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0027 seconds