Return to search

Salinity hazard mapping and risk assessment in the Bourke irrigation district

At no point in history have we demanded so much from our agricultural land whilst simultaneously leaving so little room for management error. Of the many possible environmental impacts from agriculture, soil and water salinisation has some of the most long-lived and deleterious effects. Despite its importance, however, land managers are often unable to make informed decisions of how to manage the risk of salinisation due to a lack of data. Furthermore, there remains no universally agreed method for salinity risk mapping. This thesis addresses these issues by investigating new methods for producing high-resolution predictions of soil salinity, soil physical properties and groundwater depth using a variety of traditional and emerging ancillary data sources. The results show that the methodologies produce accurate predictions yielding natural resource information at a scale and resolution not previously possible. Further to this, a new methodology using fuzzy logic is developed that exploits this information to produce high-resolution salinity risk maps designed to aid both agricultural and natural resource management decisions. The methodology developed represents a new and effective way of presenting salinity risk and has numerous advantages over conventional risk models. The incorporation of fuzzy logic provides a meaningful continuum of salinity risk and allows for the incorporation of uncertainty. The method also allows salinity risk to be calculated relative to any vegetation community and shows where the risk is coming from (root-zone or groundwater) allowing more appropriate management decisions to be made. The development of this methodology takes us a step closer to closing what some have called our greatest gap in agricultural knowledge. That is, our ability to manage the salinity risk at the subcatchment scale.

Identiferoai:union.ndltd.org:ADTP/205392
Date January 2008
CreatorsBuchannan, Sam, Faculty of Science, UNSW
PublisherPublisher:University of New South Wales.
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0021 seconds