Return to search

Insights and Characterization of l1-norm Based Sparsity Learning of a Lexicographically Encoded Capacity Vector for the Choquet Integral

This thesis aims to simultaneously minimize function error and model complexity for data fusion via the Choquet integral (CI). The CI is a generator function, i.e., it is parametric and yields a wealth of aggregation operators based on the specifics of the underlying fuzzy measure. It is often the case that we desire to learn a fusion from data and the goal is to have the smallest possible sum of squared error between the trained model and a set of labels. However, we also desire to learn as “simple’’ of solutions as possible. Herein, L1-norm regularization of a lexicographically encoded capacity vector relative to the CI is explored. The impact of regularization is explored in terms of what capacities and aggregation operators it induces under different common and extreme scenarios. Synthetic experiments are provided in order to illustrate the propositions and concepts put forth.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-3743
Date09 May 2015
CreatorsAdeyeba, Titilope Adeola
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0024 seconds