[Truncated abstract] Fuzzy inference systems (FIS) are information processing systems using fuzzy logic mechanism to represent the human reasoning process and to make decisions based on uncertain, imprecise environments in our daily lives. Since the introduction of fuzzy set theory, fuzzy inference systems have been widely used mainly for system modeling, industrial plant control for a variety of practical applications, and also other decisionmaking purposes; advanced data analysis in medical research, risk management in business, stock market prediction in finance, data analysis in bioinformatics, and so on. Many approaches have been proposed to address the issue of automatic generation of membership functions and rules with the corresponding subsequent adjustment of them towards more satisfactory system performance. Because one of the most important factors for building high quality of FIS is the generation of the knowledge base of it, which consists of membership functions, fuzzy rules, fuzzy logic operators and other components for fuzzy calculations. The design of FIS comes from either the experience of human experts in the corresponding field of research or input and output data observations collected from operations of systems. Therefore, it is crucial to generate high quality FIS from a highly reliable design scheme to model the desired system process best. Furthermore, due to a lack of a learning property of fuzzy systems themselves most of the suggested schemes incorporate hybridization techniques towards better performance within a fuzzy system framework. ... This systematic enhancement is required to update the FIS in order to produce flexible and robust fuzzy systems for unexpected unknown inputs from real-world environments. This thesis proposes a general framework of Adaptive T-S (Takagi-Sugeno) type Rough-Fuzzy Inference Systems (ARFIS) for a variety of practical applications in order to resolve the problems mentioned above in the context of a Rough-Fuzzy hybridization scheme. Rough set theory is employed to effectively reduce the number of attributes that pertain to input variables and obtain a minimal set of decision rules based on input and output data sets. The generated rules are examined by checking their validity to use them as T-S type fuzzy rules. Using its excellent advantages in modeling non-linear systems, the T-S type fuzzy model is chosen to perform the fuzzy inference process. A T-S type fuzzy inference system is constructed by an automatic generation of membership functions and rules by the Fuzzy C-Means (FCM) clustering algorithm and the rough set approach, respectively. The generated T-S type rough-fuzzy inference system is then adjusted by the least-squares method and a conjugate gradient descent algorithm towards better performance within a fuzzy system framework. To show the viability of the proposed framework of ARFIS, the performance of ARFIS is compared with other existing approaches in a variety of practical applications; pattern classification, face recognition, and mobile robot navigation. The results are very satisfactory and competitive, and suggest the ARFIS is a suitable new framework for fuzzy inference systems by showing a better system performance with less number of attributes and rules in each application.
Identifer | oai:union.ndltd.org:ADTP/258978 |
Date | January 2009 |
Creators | Lee, Chang Su |
Publisher | University of Western Australia. School of Electrical, Electronic and Computer Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Lee Chang Su, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html |
Page generated in 0.002 seconds