The thesis focuses on how to optimize vehicle routes for distributing logistics. This vehicle route optimization is known as a vehicle routing problem (VRP). The VRP has been extended in numerous directions for instance by some variations that can be combined. One of the extension forms of VRP is a capacitated VRP with stochastics demands (CVRPSD), where the vehicle capacity limit has a non-zero probability of being violated on any route. So, a failure to satisfy the amount of demand can appear. A strategy is required for updating the routes in case of such an event. This strategy is called as recourse action in the thesis. The main objective of the research is how to design the model of CVRPSD and find the optimal solution. The EEV (Expected Effective Value) and FCM (Fuzzy C-Means) – TSP (Travelling Salesman Problem) approaches are described and used to solve CVRPSD. Results have confirmed that the EEV approach has given a better performance than FCM-TSP for solving CVRPSD in small instances. But EEV has disadvantage, that the EEV is not capable to solve big instances in an acceptable running time because of complexity of the problem. In the real situation, the FCM –TSP approach is more suitable for implementations than the EEV because the FCM – TSP can find the solution in a shorter time. The disadvantage of this algorithm is that the computational time depends on the number of customers in a cluster.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:401586 |
Date | January 2019 |
Creators | Muna, Izza Hasanul |
Contributors | Roupec, Jan, Popela, Pavel |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds