L'imagerie quantitative des propriétés physiques du sous-sol est fondamentale pour de nombreuses applications impliquant des échelles d'exploration très variées: géotechnique pour l'imagerie de la proche surface, exploration à l'echelle crustale, reconstruction lithosphérique et imagerie globale pour la compréhension fondamentale des processus géodynamiques, mais aussi pour l'exploitation optimale des ressources du sous-sol.Parmi les méthode géophysiques, les méthodes sismiques ont le pouvoir de résolution le plus élevé. La densification des dispositifs d'acquisition, la mise au point de sources et de capteurs large bande et l'augmentation de la puissance de calcul ouvrent de nouvelles perspectives pour le développement et l'application de méthodes non conventionnelles d'imagerie sismique pour une extraction plus complète de l'information contenue dans les données sismiques. Parmi ces méthodes d'imagerie non conventionnelles, les méthodes d'inversion du champ d'onde complet, fondées sur la résolution complète de l'équation d'onde pour le problème direct (modélisation sismique) et la résolution d'un processus d'optimisation pour le problème inverse, font actuellement l'objet de nombreux développements méthodologiques, tant au sein des communautés industrielles qu'académiques.Le challenge numérique est la résolution du problème direct en trois dimensions pour un grand nombre de sources sismiques caractéristique des acquisitions pétrolières massives, et le challenge méthodologique est la gestion de la non-linéarité du problème inverse résultant de l'éclairage incomplet du sous-sol depuis la surface par des sources de bande-passante limitée. L'apport attendu de ces méthodes est la résolution de l'imagerie sismique de l'ordre de la demi-longueur d'onde propagée, sa capacité à imager des cibles complexes d'un point de vue structural notamment sous des écrans salifères ou basaltiques et la quantification des paramètres physiques caractérisant le sous-sol tels que la vitesse de propagation des ondes de compression à laquelle peuvent s'ajouter la densité, l'atténuation, la vitesse de propagation des ondes de cisaillement et des paramètres caractérisant l'anisotropie du milieu.L'objectif de cette thèse est de poursuivre le développement d'une méthode d'imagerie sismique acoustique 3D par l'inversion du champ d'onde complet et de l'appliquer à des données réelles pétrolières 3D de fond de mer enregistrées sur le champ pétrolier de Valhall en Mer du Nord et de fournir une des premières évaluations du potentiel des méthodes d'inversion des formes d'onde pour l'imagerie de milieux géologiques 3D L'inversion est effectuée en domaine fréquentiel où un nombre limité de fréquences est inversé suivant un protocole hiérarchique maintenant bien éprouvé procédant des basses fréquences vers les hautes fréquence: cette approche multi-échelle favorise la prise en compte de la non-linéarité du problème inverse.L'approche de modélisation en domaine temporel avec extraction du champ monochromatique par une transformée de Fourier discrète est effectuée pour calculer les champs d'onde monochromatique nécessaires à la résolution du problème inverse. L'algorithme d'optimisation du problème inverse est fondé sur une méthode de gradients conjugués préconditionés ou sur une méthode quasi-Newton. Les méthodes sont appliquées dans le cadre de l'approximation visco-acoustique isotrope où le milieu est paramétré par la vitesse de propagation des ondes de compression, l'atténuation et la densité. Seule, la composante hydrophone acquise en fond de mer est inversée. L'enjeu méthodologique de cette thèse est de fournir un modèle tri-dimensionelle du champ pétrolier de Valhall dans un cube de dimensions approximatives 18 km x 12 km x 5 km en poussant l'inversion à la fréquence la plus élevée possible. / Quantitative imaging of the subsurface physical properties is fundamental to many applications involving very various explorations, such as geotechnical imaging of the near surface, petroleum exploration, crustal lithospheric exploration. This helps us to understand the fundamental of geodynamic processes and also to exploit the resources of subsurface. Among the geophysical methods, seismic methods can give a higher resolution. The improvements of the acquisition in size and density, the multifold/multicomponent wide-aperture and wide-azimuth acquisitions, and the increased high-performance computing power open new perspectives to develop and apply non-conventional seismic imaging methods for extraction more complete and continuous information in the seismic data. Among these non-conventional methods, the full waveform inversion method based on the complete resolution of the wave equation for the direct problem (seismic modeling) and the resolution of optimization process for the inverse problem, are currently the subject of many methodological developments, in both industrial and academic communities. The numerical challenge is the resolution of the three-dimensional direct problem for a large number of seismic sources, typically few to tens of thousands in petroleum industry acquisition. The methodological challenge is the management of the non-linearity of the inverse problem resulting from the incomplete illumination of subsurface from the surface survey with a limited bandwidth source. The expected contribution of these methods is to reach a spatial resolution of half-a-wavelength. It has the ability to image complex structure targets such as saline or salt-bearing basaltic and to quantify the subsurface physical parameters such as velocity, density, attenuation, anisotropic parameters and so on. The objective of this thesis is to develop a method of three-dimensional seismic imaging by full waveform inversion and apply it to real ocean-bottom data set recorded in the Valhall oil field (in the North Sea) and to provide an early evaluation of the potentialities of full waveform inversion for imaging three-dimensional geological environments . The inversion is performed in frequency domain. A limited number of frequencies is inverted following a hierarchical protocol from low to high frequencies. This multi-scale approach helps to reduce the non-linearity of the inverse problem. The modeling approaches is performed in time domain and monochromatic wavefields are extracted by discrete Fourier transform to solve the inverse problem in frequency domain. The optimization algorithm of the inverse problem is based on conjugate gradients method or quasi-Newton method. The method is applied in the framework of the visco-acoustic isotropic approximation, where the medium is parameterized by the velocity of compressional wave propagation, attenuation, and density. The hydrophone data component located at the seabed is inverted. The methodological issue of this thesis is to develop by full waveform inversion a three-dimensional high-resolution velocity model of the Valhall oil field in a cube with a size of 18 km $\times$ 12 km $\times$ 5 km, and to push the inversion towards frequencies as high as possible.
Identifer | oai:union.ndltd.org:theses.fr/2012GRENU015 |
Date | 21 September 2012 |
Creators | Hu, Guanghui |
Contributors | Grenoble, Virieux, Jean |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.003 seconds