Return to search

Growth and Characterization of AlN : From Nano Structures to Bulk Material

Aluminum nitride (AlN) exhibits a large direct band gap, 6.2 eV, and is thus suitable forsolid state white-light-emitting devices. It is capable in spintronics because of its high Curietemperature if doped with transition metals. AlN can also be used as a buffer layer for growth ofdevice-grade GaN as well as for application in sensors, surface acoustic wave devices, and hightemperatureelectronics. AlN shows excellent field-emission performance in vacuummicroelectronic devices due to its small electron affinity value, which is from negative to 0.6 eV.In this sense, nanostructured AlN, such as AlN nanowires and nanorods, is important forextending our knowledge on the potential of nanodevice applications. For growth of bulk AlN thesublimation- recondensation (a kind of physical vapor transport growth) method is the mostsuccessful and promising crystal growth technique. In thesis the physical vapor transport (PVT) principle has been implemented for synthesisof AlN on 4H-SiC in sublimation epitaxy close space configuration. It has been shown that theAlN crystal morphology is responsive to the growth conditions given by temperature (1650-1900oC) and nitrogen pressure (200-800 mbar) and each morphology kind (platelet-like, needles, columnar structure, continuous layers, and free-standing quasi bulk material) occurs within anarrow window of growth parameters. Controlled operation conditions for PVT growth of wellaligned perfectly oriented arrays of AlN highly symmetric hexagonal microrods have beenelaborated and the mechanism of microrod formation has been elucidated. Special patterned SiCsubstrates have been created which act as templates for the AlN selective area growth. Themicrorods revealed an excellent feature of boundary free coalescence with growth time,eventually forming ~120 μm thick AlN layer which can be easily detached from the SiC substratedue to a remarkable performance of structural evolution. It was discovered that the locally grownAlN microrods emerge from sharp tipped hexagonal pyramids, which consist of the rare 2H-SiCpolytype and a thin AlN layer on the surface. Two unique consequences appear from the finding,the first is that the 2H-SiC polytype facilitates the nucleation of wurtzite AlN, and the second isthat the bond between the low angle apex of the pyramids and the AlN layer is very week, thusallowing an easy separation to yield free standing wafers. AlN nanowires with an aspect ratioas high as 600 have been grown with a high growth rate. Again, they have perfect alignmentalong the c-axis of the wurtzite structure with small tilt given by the orientation of the SiCsubstrate. The nanowires possess a single crystal structure with high perfection, since neitherdislocations nor stacking faults were revealed. The proposed growth concept can be further explored to enlarge the free standing AlNwafers up to a size provided by commercially available SiC four inch wafers. Also, AlN wafersfabricated by the present method may be used as seeds for large boule growth. AlN nanowires, asobtained in this study, can be used for creating a piezoelectric generator and field emitters withhigh efficiency. / Aluminium nitrid (AlN) har ett stort direkt bandgap (6.2 eV) och är lämplig för lysdioder.Det är tillämpligt inom spinnelektronik eftersom det har en hög Marie Curie-temperatur när det ärdopad med övergångsmetaller. AlN kan även användas som ett buffertskikt för tillväxt avkomponentkvalitativt GaN likväl som för sensortillämpningar, ytvågsfilterkomponenter, ochhögtemperaturelektronik. Aluminium nitrid visar excellent fältemission i vakuumkomponenter pågrund av sin låga elektronaffinitet, som är från negativt till 0.6 eV. I det här fallet så ärnanostrukturer av AlN, som nanotrådar och -stavar, viktiga för att utöka vår kunskap ompotentiella nanokomponenter. För tillväxt av AlN är sublimeringsmetoden den mestframgångsrika och lovande framställningstekniken av kristaller. I den här avhandlingen så har principen för den fysiska gastransporttekniken (PVT)implementerats för syntes av AlN på 4H-SiC filmer i en ny konfiguration genomsublimeringsepitaxi. Det demonstreras att morfologin hos AlN visar respons förtillväxtförhållandena som ges av temperatur (1650-1900oC) och kvävetryck (200-800 mbar) ocholika morfologityper (skivlika, trådar, kolumnstrukturer, kontinuerliga skikt, och friståendekvasibulkmaterial)uppstår inom ett snävt fönster av tillväxtparametrar. Kontrollerade operativaförhållanden för PVT-tillväxt av räta perfekt orienterade ansamlingar av symmetriska AlNmikrostavar har utvecklats och deras formationsmekanism diskuterats. Speciellt mönstrade SiCsubstrat har skapats som agerar utgångsmaterial för selektiv AlN tillväxt. Mikrostavarna avslöjarett särdrag av sammanväxning utan gränslinjer med tillväxttid, som formar 120 μm tjocka AlNskikt som lätt kan avskiljas från SiC substratet genom en anmärkningsvärd strukturell evolution.Upptäckten gjordes att lokal tillväxt av AlN mikrostavar uppkommer från skarpa hexagonalapyramider som består av den sällan förekommande 2H-SiC modifikationen och tunna AlN skiktpå ytan. Två unika följder uppkommer genom upptäckten, den första att 2H-SiC modifikationenfrämjar bildning av wurtzite AlN, och den andra att bindningen mellan spetsen av pyramiden ochAlN skiktet är väldigt svag, vilket medger en enkel separering för att erhålla fristående wafers. AlN nanotrådar med ett aspektförhållande så stort som 600 har blivit framställda med högframställningshastighet. Återigen, de har perfekt linjering längs c-axeln av wurtzite-strukturenmed en låg vinkling som ges av orienteringen av SiC substratet. Nanotrådarna har en perfektkristallstruktur eftersom varken dislokationer eller stackningsfel kunde observeras. Det föreslagna framställningskonceptet kan vidare utforskas för att utöka fristående AlNwafers upp till en storlek som ges av kommersiellt tillgängliga SiC fyratumssubstrat. Vidare såkan AlN wafers som framställs genom metoden användas som utgångsmaterial för kristaller förframställning av stora götar. AlN nanotrådar, som utvecklats i denna studie, kan användas för attskapa piezoelektriska generatorer och fältemissionskomponenter med hög effektivitet.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-14814
Date January 2008
CreatorsYazdi, Gholamreza
PublisherLinköpings universitet, Materiefysik, Linköpings universitet, Tekniska högskolan, Linköping : Linköping University Electronic Press
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1200

Page generated in 0.0026 seconds