In order to stop the escalating global warming, humankind rapidly needs to develop and implement technology to lower the level of carbon dioxide in the atmosphere. Today there are methods to capture CO2 directly from the atmosphere (DAC); the problem lies in how to power them in a fossil-free and cost-attractive way. This report will focus on the application of thermal waste energy from nuclear power for DAC. To enable the coupling of the power plant to the DAC, the thermal waste energy i. e. low-pressure steam from the plant's thermal cycle, has to be brought to a higher temperature and pressure. Improving the steam can be done using one or multiple ejectors, and they can connect in different configurations. In this study, we vary the ejector configuration and the geometric parameters of the ejectors to optimize the performance of the setup. We show that three ejectors are preferable to reach the goal of 1-2 bar and that other configurations might be valuable when lowering the pressure limit.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-297557 |
Date | January 2021 |
Creators | Bellgren, Sofia, Sondén, Isabel |
Publisher | KTH, Skolan för teknikvetenskap (SCI) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2021:096 |
Page generated in 0.0017 seconds