A non-destructive tomographic measurement technique for application on nuclear fuel assemblies has beendeveloped at the Uppsala University. Using this technique, the rod-by-rod distribution of selectedradioactive isotopes is determined experimentally. In the present work, the numerical technique to reconstruct the activity distribution inside the fuelassemblies has been analyzed. Three iterative reconstruction algorithms have been investigated, ART(Additive Reconstruction Technique), ML (Maximum Likelihood) and ASIRT (Additive SimultaneousIterative Reconstruction Technique). It was found that the ART algorithm is too sensitive to data points where the gamma-ray intensityis low, while ASIRT handles it in the best manner. Furthermore, ASIRT appears to be the most stablealgorithm and produces the best agreement to theoretical data.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-307832 |
Date | January 2004 |
Creators | Lundqvist, Tobias |
Publisher | Uppsala universitet, Institutionen för strålningsvetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds