Return to search

Minimum Ignition Energy in a Hygrogen Combustible Mixture

In this thesis the Minimum Ignition Energy, in a hydrogen-air system, is studied by Direct Numerical Simulations (DNS) in a program called the Pencil Code. The heat source used to achieve ignition is modeled by a Gaussian temperature distribution. Three different geometries of the heat source are looked upon, one with spherical geometry in three dimensions, one with cylindrical geometry in two dimensions and the last in one dimension. The results show that the dimensionality of the heat source has a strong impact on ignition.In addition, a new simpler zero dimensional simulation method is proposed with the goal of replicating the results from the Pencil Code. This method needs less calculation power, and uses ignition delay time data together with the heat equation to simulate ignition. The model has proven itself useful since it reproduces the Pencil Code results very well.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ntnu-14095
Date January 2011
CreatorsJensen, Jens Tarjei
PublisherNorges teknisk-naturvitenskapelige universitet, Institutt for fysikk, Institutt for fysikk
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds