Return to search

Impact de l'haploinsuffisance du gène Sim1 sur le développement et la fonction du noyau paraventriculaire de l'hypothalamus

L’obésité provient d’un déséquilibre de l’homéostasie énergétique, c’est-à-dire une augmentation des apports caloriques et/ou une diminution des dépenses énergétiques. Plusieurs données, autant anatomiques que physiologiques, démontrent que l’hypothalamus est un régulateur critique de l’appétit et des dépenses énergétiques. En particulier, le noyau paraventriculaire (noyau PV) de l’hypothalamus intègre plusieurs signaux provenant du système nerveux central (SNC) et/ou de la périphérie, afin de contrôler l’homéostasie énergétique via des projections axonales sur les neurones pré-ganglionnaires du système autonome situé dans le troc cérébral et la moelle épinière.

Plusieurs facteurs de transcription, impliqués dans le développement du noyau PV, ont été identifiés. Le facteur de transcription SIM1, qui est produit par virtuellement tous les neurones du noyau PV, est requis pour le développement du noyau PV. En effet, lors d’une étude antérieure, nous avons montré que le noyau PV ne se développe pas chez les souris homozygotes pour un allèle nul de Sim1. Ces souris meurent à la naissance, probablement à cause des anomalies du noyau PV. Par contre, les souris hétérozygotes survivent, mais développent une obésité précoce. De façon intéressante, le noyau PV des souris Sim1+/- est hypodéveloppé, contenant 24% moins de cellules. Ces données suggèrent fortement que ces anomalies du développement pourraient perturber le fonctionnement du noyau PV et contribuer au développement du phénotype d’obésité.

Dans ce contexte, nous avons entrepris des travaux expérimentaux ayant pour but d’étudier l’impact de l’haploinsuffisance de Sim1 sur : 1) le développement du noyau PV et de ses projections neuronales efférentes; 2) l’homéostasie énergétique; et 3) les voies neuronales physiologiques contrôlant l’homéostasie énergétique chez les souris Sim1+/-.

A cette fin, nous avons utilisé : 1) des injections stéréotaxiques combinées à des techniques d’immunohistochimie afin de déterminer l’impact de l’haploinsuffisance de Sim1 sur le développement du noyau PV et de ses projections neuronales efférentes; 2) le paradigme des apports caloriques pairés, afin de déterminer l’impact de l’haploinsuffisance de Sim1 sur l’homéostasie énergétique; et 3) une approche pharmacologique, c’est-à-dire l’administration intra- cérébroventriculaire (i.c.v.) et/ou intra-péritonéale (i.p.) de peptides anorexigènes, la mélanotane II (MTII), la leptine et la cholécystokinine (CCK), afin de déterminer l’impact de l’haploinsuffisance de Sim1 sur les voies neuronales contrôlant l’homéostasie énergétique.

Dans un premier temps, nous avons constaté une diminution de 61% et de 65% de l’expression de l’ARN messager (ARNm) de l’ocytocine (Ot) et de l’arginine-vasopressine (Vp), respectivement, chez les embryons Sim1+/- de 18.5 jours (E18.5). De plus, le nombre de cellules produisant l’OT et la VP est apparu diminué de 84% et 41%, respectivement, chez les souris Sim1+/- adultes. L’analyse du marquage axonal rétrograde des efférences du noyau PV vers le tronc cérébral, en particulier ses projections sur le noyau tractus solitaire (NTS) aussi que le noyau dorsal moteur du nerf vague (X) (DMV), a permis de démontrer une diminution de 74% de ces efférences. Cependant, la composition moléculaire de ces projections neuronales reste inconnue. Nos résultats indiquent que l’haploinsuffisance de Sim1 : i) perturbe spécifiquement le développement des cellules produisant l’OT et la VP; et ii) abolit le développement d’une portion importante des projections du noyau PV sur le tronc cérébral, et notamment ses projections sur le NTS et le DMV. Ces observations soulèvent donc la possibilité que ces anomalies du développement du noyau PV contribuent au phénotype d’hyperphagie des souris Sim1+/-.

En second lieu, nous avons observé que la croissance pondérale des souris Sim1+/- et des souris Sim1+/+ n’était pas significativement différente lorsque la quantité de calories présentée aux souris Sim1+/- était la même que celle consommée par les souris Sim1+/+. De plus, l’analyse qualitative et quantitative des tissus adipeux blancs et des tissus adipeux bruns n’a démontré aucune différence significative en ce qui a trait à la taille et à la masse de ces tissus chez les deux groupes. Finalement, au terme de ces expériences, les souris Sim1+/--pairées n’étaient pas différentes des souris Sim1+/+ en ce qui a trait à leur insulinémie et leur contenu en triglycérides du foie et des masses adipeuses, alors que tous ces paramètres étaient augmentés chez les souris Sim1+/- nourries ad libitum. Ces résultats laissent croire que l’hyperphagie, et non une diminution des dépenses énergétiques, est la cause principale de l’obésité des souris Sim1+/-. Par conséquent, ces résultats suggèrent que : i) l’haploinsuffisance de Sim1 est associée à une augmentation de l’apport calorique sans toutefois moduler les dépenses énergétiques; ii) l’existence d’au moins deux voies neuronales issues du noyau PV : l’une qui régule la prise alimentaire et l’autre la thermogénèse; et iii) l’haploinsuffisance de Sim1 affecte spécifiquement la voie neuronale qui régule la prise alimentaire.

En dernier lieu, nous avons montré que l’injection de MTII, de leptine ainsi que de CCK induit une diminution significative de la consommation calorique des souris des deux génotypes, Sim1+/+ et Sim1+/-. De fait, la consommation calorique cumulative des souris Sim1+/- et Sim1+/+ est diminuée de 37% et de 51%, respectivement, durant les 4 heures suivant l’administration i.p. de MTII comparativement à l’administration d’une solution saline. Lors de l’administration i.c.v. de la leptine, la consommation calorique cumulative des souris Sim1+/- et Sim1+/+ est diminuée de 47% et de 32%, respectivement. Finalement, l’injection i.p. de CCK diminue la consommation calorique des souris Sim1+/- et Sim1+/+ de 52% et de 36%, respectivement. L’ensemble des résultats suggère ici que l’haploinsuffisance de Sim1 diminue l’activité de certaines voies neuronales régulant l’homéostasie énergétique, et particulièrement de celles qui contrôlent la prise alimentaire.

En résumé, ces travaux ont montré que l’haploinsuffisance de Sim1 affecte plusieurs processus du développement au sein du noyau PV. Ces anomalies du développement peuvent conduire à des dysfonctions de certains processus physiologiques distincts régulés par le noyau PV, et notamment de la prise alimentaire, et contribuer ainsi au phénotype d’obésité.

Les souris hétérozygotes pour le gène Sim1 représentent donc un modèle animal unique, où l’hyperphagie, et non les dépenses énergétiques, est la principale cause de l’obésité. En conséquence, ces souris pourraient représenter un modèle expérimental intéressant pour l’étude des mécanismes cellulaires et moléculaires en contrôle de la prise alimentaire. / Obesity arises from imbalance of the energy homeostasis processes. Multiple anatomical and physiological evidence demonstrate the involvement of the hypothalamus in the regulation of energy homeostasis, i.e. appetite and energy expenditure. In particular, the paraventricular nucleus (PVN) of the hypothalamus plays a critical role in these important homeostatic processes. The PVN integrates multiple signals that come from the central nervous system and/or the periphery to control energy homeostasis. It regulates these processes through projections to the dorsal vagal complex (DVC), which includes the dorsal motor nucleus of the vagus (X) (DMV) and the adjacent nucleus of the solitary tract (NST), located in the brainstem.

A cascade of transcription factors involved in the specification of the PVN neurons has been described. One component of this cascade, the bHLH-PAS transcription factor SIM1, is required for the development of all neurons of the PVN. Mice homozygous for null alleles of Sim1 die shortly after birth, presumably because of the lack of PVN. In contrast, Sim1 heterozygous mice survive but show early-onset obesity. Interestingly, the number of PVN cells is reduced by 24% in Sim1+/- mice, suggesting that developmental defects may cause PVN dysfunction and, thus, contribute to the obesity phenotype.

In order to explore this hypothesis, we studied the impact of Sim1 haploinsufficiency on: 1) the development of the PVN and it efferent axonal projections; 2) energy homeostasis; and 3) neuronal pathways regulating energy homeostasis.

We used: 1) stereotaxic injections and immunological techniques to determine the impact of Sim1 haploinsufficiency on PVN, and it efferent axonal projections, development; 2) the pair-feeding paradigm to determine the impact of Sim1 haploinsufficiency on energy homeostasis; and 3) intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) injections of pharmacological agents, melanotan II (MTII), leptin and cholecystokinin (CCK), to determine the impact of Sim1 haploinsufficiency on the neuronal pathways regulating energy homeostasis.

First, we noted that the expression of oxytocin (Ot) and argenin-vasopressin (Vp) mRNA is reduced by 61% and 65%, respectively, in the PVN of Sim1+/- E18.5 embryos. Furthermore, the number of OT- and VP-producing cells was found to be decreased by 84% and 41%, respectively, in Sim1+/- adult mice. Analysis of the retrograde axonal labelling of PVN neurons after stereotaxic injection of latex beads into the DVC of Sim1+/+ and Sim1+/- mice, showed a 74% reduction of PVN neurons projecting to the DVC. However, the molecular composition of the cells affected by a decrease of Sim1 remains unknown. These results indicate that Sim1 haploinsufficiency: i) specifically interferes with the development of OT- and VP-producing cells; and ii) abolishes the development of a subset of parvocellular neurons that project to the DVC. These observations therefore raise the possibility that developmental defects contribute to the obesity phenotype of Sim1+/- mice.

Second, we observed that pair-fed Sim1+/- mice do not gain more weight than littermate controls from 4 to 16 weeks of age. Moreover, qualitative and quantitative analyses showed significant increases of lean and fat mass, with hyperplasia of white adipose tissue and hypertrophy of brown adipose tissue, in Sim1+/- mice, but not in pair-fed animals. Additionally, at 16 weeks of age, insulin levels as well as liver and adipose tissue triglyceride content were not significantly different between Sim1+/+ and Sim1+/- pair-fed, but were significantly increased in Sim1+/- fed ad libitum. These results suggest that hyperphagia is the main if not the sole contributor to the obesity of Sim1+/- mice. They indicate that: i) Sim1 haploinsufficiency affects mainly food intake with no effect on energy expenditure; ii) food intake and energy expenditure are regulated by divergent pathways within the PVN; and iii) Sim1 haploinsufficiency specifically affects the feeding pathway without interfering with the thermogenesis pathway.

Third, we found that, in both mice genotype, injection of MTII, leptin or CCK induces a significant decrease in cumulative food intake. In fact, MTII i.p. injection decreases cumulative food intake of Sim1+/- and Sim1+/+ mice by 37% and 51% respectively, when compared to saline injection. Leptin i.c.v. injection reduces cumulative food intake by 47% and 32% in Sim1+/- and Sim1+/+ mice, respectively. Finally, CCK i.p. injection decreases food intake of Sim1+/- and Sim1+/+ mice by 52% and 36%, respectively. All in all, the results of these latter studies suggest that Sim1 haploinsufficiency diminishes the activity of neuronal pathways regulating energy homeostasis, in particular of pathways controlling food intake.

In conclusion, our work has shown that Sim1 haploinsufficiency affects several developmental processes of the PVN. These developmental defects may cause the dysfunction of physiological processes regulated by the PVN, including the control of food intake, and thus contribute to the hyperphagic obesity phenotype.

Sim1 heterozygous mice represent an interesting animal model of obesity in which hyperphagia is the main, if not the sole mechanism of their obesity. These mice could therefore represent a unique opportunity to investigate cellular and molecular mechanisms in control of food intake.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/3355
Date08 1900
CreatorsDuplan, Sabine Michaelle
ContributorsMichaud, Jacques
Source SetsUniversité de Montréal
LanguageFrench
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.0027 seconds