Tous les écosystèmes contiennent des phages, ces virus qui infectent spécifiquement les bactéries. Les écosystèmes microbiens des produits laitiers ne font pas exception. Malgré les nombreuses recherches dans le domaine, les phages virulents spécifiques aux souches de Lactococcus lactis utilisées pour la fermentation du lait menacent encore la qualité des fromages et la constance des lots de production. Le phage p2 est un modèle pour l’étude des phages virulents de lactocoques, mais près de la moitié de ses gènes codent pour des protéines aux fonctions encore inconnues. L’étude des phages virulents constitue un défi de taille puisque la modification de leur génome est limitée par le court passage du génome viral dans la cellule bactérienne. Le premier objectif de cette thèse était d’adapter un outil génétique basé sur la technologie CRISPR-Cas9 afin d’inactiver des gènes d’intérêt du phage p2. Cette technologie est dérivée d’un système antiviral naturel qui permet à certains procaryotes de se défendre contre l’invasion par de l’ADN étranger. La bactérie hôte du phage p2, L. lactis MG1363, est normalement dépourvue de ce système. Le deuxième objectif était d’étudier les protéomes phagiques et bactériens lors de l’infection virale par des analyses de spectrométrie de masse à haute résolution. Enfin, le troisième objectif était d’étudier les rôles des gènes inactivés sur la multiplication des phages et des bactéries infectées, incluant l’impact sur leurs protéomes. Entre autres, par une approche intégrative combinant des analyses génomiques, phénotypiques et protéomiques, j’ai comparé le phage mutant p2Δ47, dont le gène orf47 avait été inactivé, au phage sauvage p2. Ces analyses m’ont permis de formuler une hypothèse quant à la fonction de la protéine virale ORF47. Les phages sont ubiquitaires, abondants et peuvent se multiplier rapidement. Malgré leur importance et plus d’un siècle de recherches, plusieurs aspects de la biologie des phages demeurent mal compris. En concevant un outil pour la modification des génomes de phages virulents et en optimisant des protocoles d’analyses protéomiques, j’ai développé des méthodes efficaces pour la caractérisation des protéines phagiques et pour l’étude des interactions phage-bactérie. / Phages are viruses that specifically infect and kill bacteria. They can be found in every ecosystem, including milk products. Despite decades of research, virulent phages infecting Lactococcus lactis strains used for milk fermentation still threatens the production process and cheese quality. Phage p2 is a model for the study of virulent lactococcal phages, but almost half of its genes encode proteins of unknown functions. The study of virulent phages is a challenge in itself because the modification of their genome is limited to the short infection cycle within a bacterial host. The first objective of this thesis was to adapt a CRISPR-Cas9-based genetic tool to inactivate genes of interest in the genome of phage p2. The CRISPR-Cas9 technology is derived from a natural antiviral system that allows some prokaryotes to defend themselves against invasive nucleic acids. The bacterial host of phage p2, L. lactis MG1363, is naturally deprived of this system. The second objective was to study the viral and bacterial proteomes during phage infection, making use of high throughput mass spectrometry-based proteomics. Lastly, the third objective was to study the roles of inactivated genes on phage replication and bacterial growth, including the impact on their proteomes. Amongst other, with an integrative approach combining genomic, phenotypic and proteomic analysis, I compared the mutant phage p2Δ47, lacking a functional orf47 gene, to the wild-type phage p2. These analyses allowed me to hypothesize about protein ORF47 function. Phages are ubiquitous, abundant and can replicate quickly. Despite their importance and over a century of research, many aspects of phage biology are still poorly understood. By designing a tool for the modification of virulent phages and by optimizing protocols for proteomic analysis, I developed a robust pipeline to investigate uncharacterized phage proteins and to study phage-host interactions.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/36757 |
Date | 02 October 2019 |
Creators | Lemay, Marie-Laurence |
Contributors | Moineau, Sylvain |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xix, 175 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.002 seconds