Return to search

Évolution génomique au sein d'une population naturelle de Streptomyces / Genomic evolution within a natural population of Streptomyces

Les Streptomyces sont des bactéries de la rhizosphère qui contribuent à la fertilité des sols (recyclage de la matière organique), et à la croissance et la santé des plantes. Elles possèdent parmi les plus grands génomes bactériens (12 Mb) et présentent une variabilité génétique importante. Cette variabilité connue au niveau interspécifique n’a jamais été abordée à l’échelle de la population, c’est-à-dire entre individus sympatriques appartenant à la même espèce (souches sœurs) au sein de la même niche écologique. L’objectif de ce travail est de rechercher cette diversité dans les populations de l’écosystème sol forestier, d’approcher sa dynamique et son rôle fonctionnel. Après séquençage et comparaison des génomes complets, nous avons observé une grande diversité génomique en termes de taille, de présence/absence d’éléments extrachromosomiques, mais également en terme de présence/absence de gènes le long du chromosome. Un grand nombre d’événements d’insertions et délétions (indels) comprenant de 1 à 241 gènes différencient les individus de la population. Au vu des liens phylogénétiques étroits entre les individus, l’ancêtre commun de la population est récent, aussi la diversité génomique résulterait d’un flux massif et rapide de gènes. La forte prévalence d’éléments conjugatifs intégrés dans la population suggère que la conjugaison est le moteur prépondérant de cette diversité génomique. La production différentielle de métabolites spécialisés (antibiotiques) a également été utilisée pour estimer l’impact de la diversité génétique sur le fonctionnement de la population. Nous avons pu montrer que cette production était liée à des gènes spécifiques de souches et qu’elle pouvait constituer un bien commun pour la population. Nous proposons que l’évolution rapide du génome participe au maintien des mécanismes de cohésion sociale chez ces bactéries du sol. / Streptomyces are rhizospheric bacteria that contribute to soil fertility (recycling of organic matter), plant growth and health. They have among the largest bacterial genomes (12 Mb) with a high genetic variability. The genome variability, observed at the interspecific level has never been addressed within a population, i.e. between sympatric individuals belonging to the same species (Conspecific strains) within the same ecological niche. The objective of this work was to investigate this diversity in the forest soil ecosystem, to estimate its dynamics and its potential functional roles. After sequencing and comparison of the complete genomes, we observed a wide genomic diversity in terms of size, presence/absence of extrachromosomal elements, but also in terms of presence/absence of genes along the chromosome. A large number of insertion and deletion events (indels) from 1 to 241 genes differentiate individuals in the population. Given the close phylogenetic relationship of these strains, the common ancestor of the population is recent, hence the genomic diversity would result from a massive and rapid gene flux. The high prevalence of integrative and conjugative elements in the population suggests that conjugation could act as a driving force of this diversity. Differential production of specialized metabolites (antibiotics) was also used to estimate the impact of genetic diversity on population’s ecology. We were able to show that this production was linked to strain specific genes and that it may constitute a « public good » for the population. We propose that the rapid evolution of the genome contributes to the maintenance of social cohesion mechanisms within these soil bacteria.

Identiferoai:union.ndltd.org:theses.fr/2019LORR0159
Date03 December 2019
CreatorsTidjani, Abdoul-Razak
ContributorsUniversité de Lorraine, Leblond, Pierre, Bontemps, Cyril
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds