The overarching goal of this thesis is to develop a diagnostic and predictive model to quantify the estuarine CO2 dynamics across scales – from catchment to the globe – using an approach that explicitly resolves the strong physical and biogeochemical gradients typically observed in these systems.Chapter 1 provides fundamental definitions and descriptions of estuaries, as well as an assessment of their role in the global carbon cycle. It also raises the specific objectives and research questions tackled in the present study. Chapter 2 presents the rationale behind the novel modelling approach (C-GEM, Carbon-Generic Estuary Model) developed in the framework of this thesis. First, the dominant processes that control the estuarine biogeochemistry in estuaries are discussed in detail. Then, the power of reactive-transport models (RTMs) in understanding and quantifying the estuarine biogeochemical functioning is illustrated on the basis of local modelling studies. Finally, trends in estuarine biogeochemical dynamics across different geometries and environmental scenarios are briefly explored with C-GEM and results are discussed in the context of improving the modelling of estuarine carbon dynamics at regional and global scales. In Chapter 3, a detailed description of C-GEM, both in terms of structure and set-up, is provided and model’s performance is successfully evaluated through comprehensive model-data and model-model comparisons in the macro-tidal Scheldt estuary (BE/NL). In Chapter 4, C-GEM is combined with a generic set of forcing conditions and parameter values to quantify the carbon dynamics (net ecosystem metabolism, CO2 exchange at the air-water interface, carbon filtering capacity) in three idealized estuaries subject to temperate climatic conditions. Their hydro-geometrical characteristics span the wide diversity of estuarine morphological characteristics. Model results are used to upscale the estuarine CO2 dynamics under present-day conditions and to quantify the response of the estuarine filter to future atmospheric CO2, land use and climate change scenarios. In Chapter 5, C-GEM is applied to derive estimations of carbon export and CO2 outgassing from all tidal estuaries discharging in the North Sea. Overall, our results suggest that the estuarine carbon filtering capacity and the contribution of these land-ocean transition systems to the atmospheric CO2 budget might not be as high as previously thought. Finally, a conclusive chapter (Chapter 6) provides a synthesis of the key findings and arguments projected by the present research work. Moreover, recommendations are given in the light of further applications of the modelling approach developed during this thesis. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
Identifer | oai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/228693 |
Date | 24 March 2016 |
Creators | Volta, Chiara |
Contributors | Regnier, Pierre A.G., Chou, Lei, Gypens, Nathalie, Garnier, Josette, Rabouille, Christophe, Laruelle, Goulven Gildas, Bonneville, Steeve |
Publisher | Universite Libre de Bruxelles, Université libre de Bruxelles, Faculté des Sciences – Sciences de la Terre et de l'Environnement, Bruxelles |
Source Sets | Université libre de Bruxelles |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation |
Format | No full-text files |
Page generated in 0.0019 seconds