Return to search

Développement d'un modèle numérique d'écoulement 3D des eaux souterraines du bassin versant de la Rivière Chaudière, Québec

Une étude hydrogéologique conjointe de l'Université Laval et de la Commission Géologique du Canada (CGC) a été réalisée dans le bassin versant de la rivière Chaudière. Le but de cette étude est d’accroître les connaissances sur le système hydrogéologique du bassin versant de la rivière Chaudière qui s’étend de la frontière américaine jusqu’au fleuve Saint-Laurent. La zone étudiée a une superficie de 6675 km2. Il s’agit d’une région densément peuplée (~ 390,000 hab.) à vocation principalement agricole où 65 % de la population utilise l’eau souterraine comme principale source d’eau potable. L’aquifère régional se compose de deux unités principales : le substratum rocheux de la province géologique des Appalaches et certaines unités quaternaires granulaires. Le confinement de l’unité rocheuse est contrôlé par des sédiments glaciaires, marins ou lacustres fins d’épaisseurs et de distribution variables. L’écoulement dans le roc se fait dans sa partie supérieure où la fracturation est la plus importante. La première étape des travaux a d’abord consisté à définir les propriétés hydrauliques des formations géologiques. Les données utilisées proviennent de divers rapports, de données du système d’information hydrogéologique (SIH), du Ministère du Développement Durable, de l’Environnement, de la Faune et des Parcs du Québec (MDDEFP), de rapports de consultants ainsi que d’une campagne de travaux de terrain effectuée à l’été 2007. Parmi ces données, la conductivité hydraulique (K) constitue la principale propriété à définir. Plusieurs valeurs de K ont été extraites directement ou indirectement de rapports existants. Une partie importante des valeurs de la conductivité hydraulique a été estimée à partir de la base de données SIH. Parmi celles-ci, 1333 valeurs ont été évaluées à partir de la capacité spécifique (Bradbury et al, 1985); 89 de ces mesures ont étés qualifiées de données de qualités car elles respectent toutes les conditions de la méthode, à l’exception du temps de pompage souvent trop court (94% des cas). En se basant sur les mesures recueillies, la moyenne géométrique des données de conductivité hydraulique (K) s’élève à 5 x 10-6 m/s avec un écart-type du logarithme de K égal à 0.60. La lithologie ne semble pas avoir une grande influence sur les valeurs de la conductivité hydraulique car toutes les valeurs moyennes de chacune des lithologies se trouvent à l’intérieur d’un même ordre de grandeur. Un modèle numérique a été construit pour l’ensemble de la zone d’étude à l’aide du logiciel de modélisation par éléments finis Watflow (Molson et al., 2002) afin d’interpréter le système d’écoulement de l’eau souterraine au niveau régional. Le modèle tridimensionnel est composé de 28 couches dont 18 représentent les dépôts meubles et 10 le roc. Le maillage 3D comprend 1.694.672 noeuds et 3.344.516 éléments triangulaires prismatiques. La rivière Chaudière et ses tributaires constituent des limites à charge imposée. Le modèle numérique d’élévation (MNE), constitue la surface du modèle. La base du modèle ainsi que le reste des limites externes sont considérées comme des limites à flux nul. La recharge à la surface a été calculée en utilisant le modèle d’infiltration HELP (Benoît et al., 2012). Les puits municipaux sont représentés de façon ponctuelle. La consommation associée aux puits ou réseaux privés, puits industriels et à l’agriculture a été répartie sous forme de lame d’eau équivalente et soustraite de la recharge. La conductivité hydraulique horizontale ainsi que l’anisotropie verticale constituent les paramètres de calage du modèle. Le calage du modèle est réalisé avec 68 données de puits municipaux. Les résultats du calage du modèle ont montré que l’erreur du bilan de masse est près de nul, ce qui implique que la somme des flux entrants est égale à la somme des flux sortants. L’eau souterraine étant une source d’approvisionnement importante, la mauvaise gestion peut mener à des discordes entre les différents utilisateurs. Connaître au mieux la capacité d’alimentation en eau ainsi que le système d’aquifère permet de prévenir des problèmes potentiels entre les différents utilisateurs mais aussi à les sensibiliser à une utilisation mieux adaptée de la ressource. Différents scénarios, incluant les variations de la recharge, ont été simulés à l’aide du modèle calé. Ces simulations ont consisté à faire varier les taux de recharge et de pompage de  20 %, permettant d’identifier les zones nécessitant un suivi de la qualité de l’eau souterraine et un suivi piézométrique. Les zones les plus sensibles aux variations climatiques ont été aussi déterminées. Les changements du taux de pompages et de recharge ( 20%) provoquent une variation de moins de 5 m sur le système modélisé principalement par rapport au niveau de la nappe. / A joint hydrogeological assessment study between Université Laval and the Geological Survey of Canada (GSC) has been conducted in the Chaudière River watershed. The main objective of the study was to gain further understanding into the groundwater resources within the region. The watershed extends over ~ 6700 km2 from the United States border northwards to the Saint Lawrence River in the province of Québec (Canada). Groundwater is an important source of drinking water as well as for irrigation and industrial use, however the supply is finite and there are potential risks of conflicts arising from different users. It is thus important to understand the aquifer systems throughout the watershed in order to avoid possible conflicts and to help decision makers to better manage the resource. Within the catchment, up to 65% of the population relies on groundwater as the primary drinking water resource, whereby most of the water is used for agricultural purposes. The regional aquifer system is dominated by the underlying rock substratum of the Appalachian province and Quaternary aquifer units. The degree of confinement of the fractured aquifers is controlled by the overlying glacial, marine and fine lacustrine sediments of variable thicknesses. The groundwater circulation within the fractured aquifers predominantly takes place in the uppermost part of the fractured water-bearing units, where fracture density is highest. As a first step, the hydraulic properties of the fractured basement were defined, for which the hydraulic conductivity (K) of the formations can be considered as the most important hydraulic characteristic. A literature review of the available reports as well as the SIH and the MDDEFP data bases was performed in order to assemble the data. Additional field work was completed by the GSC during the spring of 2007 to supplement the data base. Most of the values of the hydraulic conductivity K were taken from the existing reports while others were estimated from the SIH data base. The data base contains 1333 values which were evaluated using Bradbury’s method, of which 83 satisfied the “quality criteria”, since they respected suggested conditions regarding the minimum pumping (which was not met in 94% of the cases). The geometric mean value of the measured hydraulic conductivities was 510-6 m/s with a standard deviation of 0.60. The maximum difference between the hydraulic conductivities of the different lithological units was about a factor of 100x. A 3D numerical finite element model was built with the Watflow model (Molson et al., 2002) for simulating the regional groundwater flow system. The model domain extends over the entire watershed and is subdivided into 28 layers, 18 for the unconsolidated deposits and 10 within the basement rock. The 3D triangular prismatic mesh contains 1,694,672 nodes and 3,344,516 elements. The topographic DEM (digital elevation model) forms the uppermost surface of the model. For the model boundary conditions, the Chaudière River and major tributaries and lakes are set as first-type boundaries with constant hydraulic heads. The model base, as well as the lateral limits, are considered as no-flow boundaries. The net recharge over the model surface was estimated using the infiltration model HELP, combined with estimates of the surface-distributed local water withdrawals. The major pumping wells are represented in the model domain as point sinks. The horizontal hydraulic conductivity together with the vertical anisotropy values for each formation were used as the model calibration parameters, using the observation data from 68 observation wells. The results of the calibration of the model showed that the mass balance error is close to zero which implies that the sum of inflows is equal to the sum of outflows. Different scenarios with recharge variations were simulated with the calibrated model. The simulations allowed identifying the principal sensitive zones which need piezometric and water quality control. It was also possible to determine the areas most sensitive to climate variations. Changes in the rate of pumping and recharge ( 20%) did not have a significant impact on the modeled system mainly in relation to groundwater level (observed variations were 5m).

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QQLA.2013/29257
Date04 1900
CreatorsBrun Kone, Mathy Yasmina
ContributorsMolson, John, Nastev, Miroslav
PublisherUniversité Laval
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
Rights© Mathy Yasmina Brun Kone, 2013

Page generated in 0.0024 seconds